
Improving Spatiotemporal Inpainting with Layer
Appearance Models

Thommen Korah and Christopher Rasmussen

Dept. Computer and Information Sciences
University of Delaware

Newark, DE 19716
{korah, cer}@cis.udel.edu

Abstract. The problem of removing blemishes in mosaics of building fa-
cades caused by foreground objects such as trees may be framed in terms
of inpainting. Affected regions are first automatically segmented and then
inpainted away using a combination of cues from unoccluded, tempo-
rally adjacent views of the same building patch, as well as surround-
ing unoccluded patches in the same frame. Discriminating the building
layer from those containing foreground features is most directly accom-
plished through parallax due to camera motion over the sequence. How-
ever, the intricacy of tree silhouettes often complicates accurate motion-
based segmentation, especially along their narrower branches. In this
work we describe methods for automatically training appearance-based
classifiers from a coarse motion-based segmentation to recognize fore-
ground patches in static imagery and thereby improve the quality of the
final mosaic. A local technique for photometric adjustment of inpainted
patches which compensates for exposure variations between frames is
also discussed.

1 Introduction

For a task such as vision-based architectural modeling, one subgoal is to ob-
tain “clean” texture maps of the planar building faces with foreground objects
removed. Image/video inpainting or completion [1, 2, 3, 4], a method for image
restoration or object removal, suggests a way to remove larger foreground ele-
ments by interpolating building features spatially and/or temporally. Typically,
the region to be filled is user-specified, but in previous work [5] we showed
how problem areas could be automatically identified using motion cues. In that
work, we observed that pure spatial inpainting is strictly necessary only where
the background is never seen for the entire sequence, and that median filtering
suffices when it is present in a majority of views. Our major contributions were
(1) how to find the holes to be filled and (2) how to use building regions visible
in a non-zero minority of views to constrain what should be painted there. By
combining spatial information from pixels in a partially-completed mosaic with
the temporal cues provided by images in the timeline, or sequence of images
captured, sequences that present significant difficulties for existing background-
subtraction techniques could be well-handled.

G. Bebis et al. (Eds.): ISCV 2006, LNCS 4292, pp. 1634–1646, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improving Spatiotemporal Inpainting with Layer Appearance Models 1635

Building sequence
Feature-based registration

using RANSAC

Affine rectification and
bundle adjustment

Stack timeline of background
stabilized images

Compute median mosaic

Stage 1: Timeline inpainting
of majority-occluded pixels

Stage 2: Pure spatial inpainting
of unanimously occluded pixels

Extract building and foreground
patches as training examples

using motion cues

Learn static appearance
model for patches

Calculate Median Absolute
Deviation (MAD) and mark
high MAD pixels as a hole

Final clean mosaic

Fig. 1. System diagram for recovering clean texture maps. The thick red boxes indicate
where the novel techniques discussed in this work fit into the overall framework.

This paper extends our previous work in several significant ways to achieve
considerably improved results on difficult sets of images. First, we have found
that motion cues and inpainting alone have shortcomings in eliminating certain
foreground elements such as leaves and thin branches. An inability to recognize
patches in the timeline containing such features tended to introduce subtle arti-
facts into the final mosaic, primarily because our method for measuring motion
energy was not fine-grained enough to capture high-frequency occluders.

In [6] we enhanced the algorithm with a PCA-based measure of appearance
similarity for patch selection in the spatiotemporal inpainting algorithm. By
learning a local model of the building appearance from a set of exemplar patches,
inpainted regions were virtually indistinguishable from the previous SSD-based
method and filled in more than an order-of-magnitude faster–a key improve-
ment when dealing with long sequences and panoramas. While the focus of that
work was efficiency, appearance cues (vs. solely motion-based ones) suggested
additional avenues for increasing the quality of foreground-background discrim-
ination that we explore further in this paper. In the next sections we will briefly
review our basic algorithm from [5], which we call timeline inpainting, describe
our procedures for patch classification and photometric alignment, and present
results for several different building sequences.

2 Timeline Inpainting

2.1 System Framework

Figure 1 shows a system diagram of the timeline inpainting framework intro-
duced in previous work [5]. Given a building sequence, it outputs a texture map
of the facade with all foreground elements removed - as illustrated by Fig. 2

1636 T. Korah and C. Rasmussen

Every alternate frame from 9 to 17 in the 18 frame sequence

(a) (b)

(c) (d)

Fig. 2. Result from various stages of our algorithm for the Building A sequence (top
row). The central windows are occluded in almost all frames making the case for in-
painting. (a) Median mosaic. Foreground pixels are intermingled with the background
when they are in the majority of frames. (b) MAD outliers that will be fed to the in-
painting algorithm for filling. (c) Result after timeline inpainting (Stage 1). (d) Result
after spatial inpainting (Stage 2).

containing the result from various stages of this algorithm. The boxes in the
system diagram are shaded according to its function, and the thick red boxes
indicate where the novel techniques introduced in this work fit in. The pipeline
begins by computing the dominant planar motion (assumed to belong to the
building facade) between successive pairs of images It, It+1 in a sequence of N
frames. This sequence is expected to be captured from a robot platform while
moving around the building perimeter (1-D scanning motion). A line detec-
tor is applied on the warped images to compute the rectifying homography.
Finally, a full bundle adjustment is carried out to compute a single frame-to-
mosaic homography for each frame. The result is a stack of background stabilized
images Wt.

Each location p = (x, y) in the mosaic reference frame has a set of pix-
els from the background stabilized images {Wt(p)} associated with it which
we call its timeline T (p). Intuitively, since all pixels on the building facade ex-
hibit the dominant motion, they should appear stationary in the mosaic whereas
foreground objects such as trees and signs move due to parallax. Given that
each T (p) contains an unknown mixture of background and foreground object

Improving Spatiotemporal Inpainting with Layer Appearance Models 1637

pixels, our goal is to correctly pick or estimate each background pixel M(p)
where |T (p)| > 0, forming a timeline mosaic Mtime . It is also important to
identify those pixels where the background was never imaged (unanimously oc-
cluded), in which case regular image completion needs to be done based on
contextual information from the rest of the mosaic. The result of the second
stage would be the required texture map of the building mosaic M. These
two stages are shown in the green boxes forming the central component of our
algorithm.

The boxes to the left of the main pipeline indicate that the median mosaic
Mmed is used as an initial robust estimator. The temporal median belongs to
the background only if it was imaged in a majority (> 50%) of frames. We use
the median absolute deviation (MAD) [7] metric to threshold out outlier pixels.
These are marked as holes to be inpainted over.

The key contribution of this paper is shown in the yellow boxes to the right
of the central pipeline. Most exemplar-based methods [8, 9] use the SSD as the
distance function d(·, ·) between two image patches. For large search regions (as
typically occurs with panoramas or videos), this could be very computationally
expensive. We therefore try to “learn” a more compact representation of build-
ing and foreground patches to measure building likelihood. Since appearance
models can vary with location or season, motion cues are exploited to bootstrap
the learning process by generating positive and negative examples of building
patches. A pixel-wise Gaussian color model is also learnt to complement the
coarser patch-based models. The techniques will be elucidated in greater detail
in the following sections.

We first discuss some other improvements we’ve made to the overall framework
including patch selection by better fusion of motion and appearance likelihoods,
radiometric alignment of patches from distant frames, and incorporating domain
knowledge to assist Stage 2 of spatial inpainting. We will then describe the
appearance models used.

2.2 Patch Selection

Consider a patch Ψp̂ on the fill-front boundary of the timeline mosaic Mtime
that is the next to be inpainted. Pixels in its unfilled part Ψp̂ ∩ Ω (where Ω is
the hole) will come from the corresponding part of one timeline patch Ψ∗

p̂ ∩ Ω.
The building likelihood of each timeline patch in Ψ t

p̂ is jointly measured by the
appearance and motion energy as

B(Ψ t
p̂) = papp(Ψ t

p̂)p̄motion(Ψ t
p̂). (1)

Pixels are then copied from Ψ∗
p̂ determined by ∗ = argmaxt B(Ψ t

p̂). The exact
definition of the terms on the right side will be deferred until the next section,
but suffice it to say that they represent the likelihood of a patch belonging
to either the building or the foreground based on appearance and motion cues
respectively. To prevent copying patches from timelines where the background
was never imaged, we set appearance and motion thresholds Tapp and Tmotion.

1638 T. Korah and C. Rasmussen

Without correction With correction

Fig. 3. Results of photometric correction during inpainting on Building C sequence

Tapp varies with the appearance model used and is determined by cross-validation
experiments on the training set. Tmotion is set to 0.8 implying that patches
with more than 80% of pixels above the motion threshold τmotion will not to
be included in the computation of (1). The learnt models will be shown to be
discriminative with well separated decision boundaries, thus easing the task of
setting these thresholds.

Since (1) operates on patches, it does not guarantee against blemishes in the
mosaic that occur when tiny fragments of foreground pixels are copied over.
Thus a per-pixel decision is also made before copying patches from the timeline
- once again based on appearance and motion. The Gaussian color model is used
to threshold out bad pixels based on the RGB values, while pixels with motion
energy below τmotion are also not copied to Mtime . This combined framework
allows us to find the right balance between spatial and temporal cues at either
fine-grained or coarse-grained resolutions.

2.3 Photometric Alignment

For a sequence with significant variations in intensity, either due to lighting
changes in the scene or automatic camera controls, the seams between overlap-
ping patches may be pronounced. Graph-cut and gradient-domain algorithms
[10, 11] have been used to minimize these effects in mosaicing and texture syn-
thesis. Since most of the photometric variations in our sequence arise due to
varying camera parameters, we experimented with exactly recovering the camera
response curves to compensate for these radiometric misalignments [12]. How-
ever this proved very sensitive to misalignments and foreground objects. Noting
that an affine transformation across each RGB channel is able to fully account
for contrast and brightness changes [13,14], we simply use a multiplicative term
λk that represents the contrast change across the patch. When pixels from the
best chosen patch Ψ∗

p̂ are to be copied into the timeline mosaic Mtime , λk is esti-
mated by least squares minimization over the overlapping pixels. This correction
is applied before the missing pixels are filled in.

Figure 3 focuses on the result of inpainting with and without photometric
alignment on a section of the Building C sequence. When compared to [5], the
mosaics generated using this technique appear much more consistent and visually
pleasing. Even though we only model contrast changes, it is sufficient when
applied to a small patch and is able to propagate to a much larger scale.

Improving Spatiotemporal Inpainting with Layer Appearance Models 1639

Positive examples of building patches

Negative examples from RANSAC outliers

Fig. 4. Instances of 11 × 11 patches from the Building A sequence used for training
the classifier

2.4 Heuristics for Spatial Inpainting in Stage 2

Mosaic pixels that were never imaged in the timeline are detected in Stage 1 and
marked as a hole - to be completed in Stage 2 by a general spatial inpainting
algorithm. Given that most of the background has been recovered in Stage 1, only
a small fraction of pixels require conventional inpainting. We use the algorithm
of [2] with a few heuristics derived from domain knowledge. Firstly, we search
within the warped sequence W rather than the result of Stage 1 to improve
the likelihood of finding a good match. Secondly, since building facades exhibit
grid-like patterns, we limit the SSD search to lie within a horizontal and vertical
grid around the target patch. This serves to speed up the search through the
sequence and reduce the chances of picking a wrong patch to copy into the hole.

3 Measuring Building Likelihood

3.1 Appearance Modeling

The temporal information available from the timeline has already limited the
candidate pixels that can be copied to a small set of aligned image patches in
the stack W. It was suggested in our previous work [6] that the appearance
matching problem could be reformulated as classifying patches in a timeline as
building or foreground. Compared to the exhaustive search over Φ using SSD,
this could potentially be much more efficient. We now explain our design of a
classifier that can disambiguate between building and foreground patches.

Training Set. Most classification and semantic recognition algorithms [15, 16,
17] rely on supervised training with a user manually marking out positive and
negative examples. Learning from a universal set of examples does not seem
appropriate to our task as the nature of building and non-building patches could
vary with location or even seasons. We instead use motion cues to generate
training examples specific to the particular sequence - thus bootstrapping the
learning for static patch classification. Positive examples of building patches are
selected from the MAD inliers Φ by extracting n×n patches spaced by m pixels
on a regular grid (patches overlap when m < n). The patch size for learning

1640 T. Korah and C. Rasmussen

and inpainting n was typically 9 or 11, and the spacing varied from m = 3 to
m = n. In addition, we detect Harris corners on the MAD inliers and add them
to the positive examples, with the hope of capturing the most important building
features also.

The negative examples belonging to trees, grass and so on are harder to ex-
tract. Rather than manually demarcate regions, we use the RANSAC outliers
from the image registration and mosaicing stage as possible examples of non-
building patches. This assumption is reasonable if the dominant motion from
frame-to-frame is that of the building. Even if a small set of RANSAC outliers
fall on the building - as it does in our case, the classification algorithm should
be robust to these incorrect labellings. Figure 4 shows a few examples of 11× 11
patches that were used for training. In a similar vein, if the MAD inliers alone
are unable to capture the salient building features due to excessive occlusion, we
add the RANSAC inliers to the training set as positive examples - albeit at the
risk of introducing more errors into the training set.

Modeling Pixel Color. An obvious first step is to experiment with the discrim-
inative ability of pixel color in separating the background from the foreground.
If indeed a statistical model can be learnt from the RGB values, it would have
the advantage of being spatially and temporally fine-grained. Tracking and seg-
mentation algorithms [18] have used Gaussian Mixture Models to model color
distributions. We take the set of RGB values from the training set patches to
model the foreground (F) and background (B) as two Gaussian distributions
described by means μf , μb and covariances Σf , Σb. The computation of the fore-
ground likelihood for pixel yi can now be framed as

p(yi|F) =
1

Zf
exp {−1

2
(yi − μf)T Σ−1

f (yi − μf)} + ε (2)

where Zf = (2 ∗ π)3/2Σ
1/2
f . The background likelihood is also computed in a

similar manner. Given the RGB values of a pixel, the probability of it belonging
to the building background is computed as P (yi = B) = p(yi|B)

p(yi|B)+p(yi|F) . Despite
the lack of context, it provides a strong cue which is first used to refine any
obvious errors in the thresholded MAD inliers, especially in the homogeneous
regions.

Visual Features. Given several labeled image patches belonging to the building
and foreground, we wish to build an empirical model of building and non-building
features for the particular sequence. Our previous technique [6] used only color
and intensity of a patch to measure its appearance similarity to other building
patches. The n × n size patches are reduced to a low-dimensional space using
Principal Component Analysis (PCA) which maximizes the scatter of all the
training samples. However, PCA has various limitations (Gaussian distribution,
orthogonal linear combinations etc.), which could make it less applicable despite
its simplicity. We observe that building patches are likely to contain prominent
linear structures with a majority of them oriented horizontally or vertically. In

Improving Spatiotemporal Inpainting with Layer Appearance Models 1641

addition, there could be texture variation in the brick or leaf that color alone
might not capture - even at the patch level.

Filter banks have been widely used for texture recognition [19, 15] as well
as object/scene categorization [16, 17]. We employ the common Base Filter Set
(BFS) used by [15] with 34 filters (8 orientations at 2 scales for 2 oriented filters,
plus 2 isotropic). Color patches are converted to grayscale before the convolution
is performed. In addition, we append the mean R, G, and B color values across
each channel to obtain a 37-dimensional feature vector. For better classification
results, the input attributes were mapped to be within [-1,1] and the responses
normalized to prevent some attributes from dominating over others.

Appearance-Based Building Likelihood. The classifier used should be ro-
bust to outliers in the training set and also generalize well over the training
examples without being too sensitive to the number of patches used for training.
We explore the two methods described below.

Nearest neighbor classifier: Given a test patch Ψy, we can classify it as belong-
ing to class ν̂ that has the maximum posterior probability. The patch Ψy is
first projected into the k-dimensional feature space. Let (< x1, V (x1) > . . . <
xN , V (xN) >) be the N nearest neighbors and their associated labels from the
training examples. Then we return a distance weighted likelihood

papp(Ψy) =
∑N

i=1 wi(Ψy,xi)δ(Building , V (xi))
∑N

i=1 wi(Ψy,xi)

where w(·, ·) is the reciprocal of the Euclidean distance between the two patches
and δ(a, b) = 1 if a = b and 0 otherwise.

Support Vector Machine: A Support Vector Machine (SVM) [20] classifier was
trained on the set of patches to learn a model for building and foreground ap-
pearance. The 37-dimensional response of the filter bank was fed as the feature
vector to SVM. The data was normalized for more accurate results. We used
SVM with an RBF kernel to map the training vectors to a higher dimensional
space - the best γ being chosen by cross-validation experiments. The freely avail-
able SVM-Light package was used for training and classification.

3.2 Motion Cues

The appearance likelihood method is coarse-grained since it operates on patches
using the whole neighborhood of pixels for support. This can result in patches
with a very small fraction of foreground pixels to be classified as building - a
common problem around the edges of leaves or branches. The color models, in
spite of working at pixel resolution, are not reliable enough as they completely
disregard context. To complement this, we employ motion cues that are spatially
fine-grained but temporally coarse.

The intersection of a pair of successive, thresholded difference images was
suggested in [21] as a method for identifying foreground pixels. By converting

1642 T. Korah and C. Rasmussen

Frame PCA+KNN FB+KNN FB+SVM

Fig. 5. Comparison of pixel classification on zoomed in section of a frame based on
PCA and filter banks(FB) with k-nearest neighbor (KNN,k = 10) and SVM. Green
shade indicates building while red regions indicate pixels classified as foreground.

the warped images to grayscale and scaling their intensity values to [0, 1] to
get {W′

t}, we can adapt this approach to define a motion energy or foreground
image at time t. Also, p̄motion(Ψ t

p̂) for a patch is the fraction of pixels in Ψ t
p̂ with

background likelihood above a minimum threshold τmotion .

4 Results

4.1 Classification

The quality of the static classifier in distinguishing between building and non-
building pixels based on the local statistics in a patch would have a direct impact
on the spatiotemporal inpainting approach of [6], not only in preventing small
foreground pixels from bleeding into the final mosaic, but also to pull in build-
ing patches that the motion cues would otherwise discard due to its temporal
coarseness.

Figure 5 zooms in on a small section of a frame and the corresponding result
of classification based on PCA, filter banks and SVM. The classification is done
independently on patches centered around every pixel. The training for Building
A was done with a total of 2908 patches, out of which 2169 were positive examples
from MAD and RANSAC inliers. The decision to classify a pixel as foreground
or background with k-nearest neighbor was made by setting a threshold of 0.8 on
papp . These numbers were arrived at after running the leave-one-out test with a
series of parameters and the model with the least percentage of error was chosen.

A few key factors can be noted. All methods seem to detect most of the
foreground or tree pixels. PCA essentially works on the RGB color values and
might not be able to pick up some of the high frequency variations that the filter
bank can. Texture-based classification is thus able to do marginally better on
some of the tiny leaves or thin branches that occlude the building. SVM seems
the cleanest among all three methods for segmentation. It can generalize well
over the training set with several examples and the classification is done in fixed
time. In contrast, nearest neighbor approaches become very inefficient as we add
more patches.

Improving Spatiotemporal Inpainting with Layer Appearance Models 1643

Every third frame from 6 to 18 in the 22 frame sequence

(a) (b)

(c) (d)

Fig. 6. Building B sequence. (a) Median mosaic. (b) MAD outliers refined by color
model that will be fed to the inpainting algorithm for filling. (c) Result after timeline
inpainting (Stage 1). (d) Result after spatial inpainting (Stage 2).

For quantitative results, we ran a leave-one-out test on the 2908 patches for
Building A. The best result using PCA was 15.1% error with 10-nearest neigh-
bors and a distance threshold of 0.85. The lowest error using filter banks was
11.2% under the same settings. The best accuracy by far was obtained with SVM
which misclassified only 3.6% of the training examples. On closer inspection, it
was observed that most of these errors boiled down to incorrect labels in the
training examples itself.

4.2 Spatiotemporal Inpainting

Each of the appearance models as well as photometric alignment was integrated
into the inpainting framework of [6] for comparison. For lack of space, we only
show results using SVM learnt on the filter responses. Similar to Fig. 2, figures 6
and 7 illustrate the output at various stages for two other building sequences.

Compared to the SSD metric used in [5], the three appearance models and
classification results demonstrate the feasibility of using them to make a hard
decision of background or foreground. Contrastingly, this is not possible using
SSD and one can only rely on the motion/parallax information that requires a

1644 T. Korah and C. Rasmussen

Every alternate frame from 6 to 14 in an 18 frame sequence

(a) (b)

Fig. 7. Building C sequence. (a) Median mosaic. (b) Result after spatial inpainting
(Stage 2).

background pixel to be imaged in three consecutive frames. The classification
approaches are clearly much more efficient (SSD required 778 seconds) since the
slowest of the 3 methods (FB+KNN) required only 115.3 seconds with definite
improvements in the quality of the mosaic.

5 Conclusion

We have described a method of training appearance-based classifiers from a
coarse RANSAC-based segmentation to recognize static imagery. The primary
motivation behind this work was to identify high frequency features that motion-
based approaches alone could not consistently capture. However, we use motion
to bootstrap the learning and generalize over the training examples. We have
applied the results of our models to both static scene segmentation as well as
inpainting to recover texture maps of occluded building facades. Various types of
visual features - both intensity-based and texture-based - were proposed in order
to learn a low-dimensional representation of image patches to aid in accurate
classification of image patches.

Inpainting a building facade is very hard due to the high amount of struc-
ture accentuating slight errors or misalignments. Most existing algorithms would
not be able to recover the whole facade behind the tree - and we have shown
promising results using appearance and motion cues. From the results at various
stages of the process, it is obvious that Stage 2 spatial inpainting is the weakest.
This is because most inpainting algorithms rely on greedy matching of patches.
A single bad choice can propagate errors without any backtracking procedure.
For example, the second window from the left in the upper story of Building B
reveals an error in the filling in. Our higher level semantic knowledge suggests
that a small white patch should be copied on the upper left edge of the window,

Improving Spatiotemporal Inpainting with Layer Appearance Models 1645

but this kind of reasoning is not built into the inpainting. Our future work in-
volves incorporating such abilities into the hole-filling. At a lower level, we wish
to experiment with gradient-domain methods [11] for blending patches and even
building entities like whole windows or doors. If the higher-level module reasons
from a single image that a window is completely occluded by a tree, we would
like to first determine where the window ought to appear and seamlessly copy a
whole window from a different part of the image.

References

1. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIG-
GRAPH. (2000) 417–424

2. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-
based image inpainting. IEEE Trans. Image Processing 13 (2004)

3. Jia, J., Wu, T., Tai, Y., Tang, C.: Video repairing: Inference of foreground and
background under severe occlusion. In: Proc. IEEE Conf. Computer Vision and
Pattern Recognition. (2004)

4. Wexler, Y., Shechtman, E., Irani, M.: Space-time video completion. In: Proc. IEEE
Conf. Computer Vision and Pattern Recognition. (2004)

5. Rasmussen, C., Korah, T.: Spatiotemporal inpainting for recovering texture maps
of partially occluded building facades. In: IEEE Int. Conf. on Image Processing.
(2005)

6. Korah, T., Rasmussen, C.: Pca-based recognition for efficient inpainting. In: Proc.
Asian Conf. Computer Vision. (2006)

7. Tommasini, T., Fusiello, A., Trucco, E., Roberto, V.: Making good features to
track better. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition.
(1998) 178–183

8. Efros, A., Freeman, W.: Image quilting for texture synthesis and transfer. In:
SIGGRAPH. (2001)

9. Bornard, R., Lecan, E., Laborelli, L., Chenot, J.H.: Missing data correction in still
images and image sequences. In: ACM Multimedia. (2002)

10. Szeliski, R.: Video mosaics for virtual environments. IEEE Computer Graphics
and Applications 16 (1996) 22–30

11. Prez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM Transactions
on Graphics (SIGGRAPH’03). (2003) 313–318

12. Kim, S.J., Pollefeys, M.: Radiometric alignment of image sequences. In: Proc.
IEEE Conf. Computer Vision and Pattern Recognition. (2004) 645–651

13. Capel, D., Zisserman, A.: Computer vision applied to super resolution. IEEE
Signal Processing Magazine 20 (2003) 75–86

14. Jin, H., Favaro, P., Soatto, S.: Real-time feature tracking and outlier rejection with
changes in illumination. In: Proc. Int. Conf. Computer Vision. (2001) 684–689

15. Varma, M., Zisserman, A.: A statistical approach to texture classification from
single images. International Journal of Computer Vision: Special Issue on Texture
Analysis and Synthesis 62 (2005) 61–81

16. Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal
visual dictionary. In: Proceedings of the Tenth IEEE International Conference on
Computer Vision (ICCV’05) Volume 2. (2005)

17. Lu, L., Toyama, K., Hager, G.D.: A two level approach for scene recognition. In:
Proc. IEEE Conf. Computer Vision and Pattern Recognition. (2005) 688–695

1646 T. Korah and C. Rasmussen

18. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time track-
ing. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 747–757

19. Leung, T.K., Malik, J.: Recognizing surfaces using three-dimensional textons. In:
ICCV. (1999) 1010–1017

20. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges,
C., Smola, A., eds.: Advances in Kernel Methods: Support Vector Learning. MIT
Press (1999)

21. Toyama, K., Krumm, J., Brumitt, B., Meyers:, B.: Principles and practice of
background maintenance. In: Proc. Int. Conf. Computer Vision. (1999)

	Introduction
	Timeline Inpainting
	System Framework
	Patch Selection
	Photometric Alignment
	Heuristics for Spatial Inpainting in Stage 2

	Measuring Building Likelihood
	Appearance Modeling
	Motion Cues

	Results
	Classification
	Spatiotemporal Inpainting

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

