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ABSTRACT

We present a technique for efficiently constructing a “clean”
texture map of a partially occluded building facade from a
series of images taken by a moving camera. After a robust
registration procedure, building regions blocked by trees,
signs, people, and other foreground objects are automati-
cally inferred via the median absolute deviation of colors
from different source images mapping to the same mosaic
pixels. In previous work we extended an existing non-parametric
inpainting algorithm for filling such holes to incorporate
spatiotemporal appearance and motion cues in order to cor-
rectly replace the outlier pixels of the texture map. In con-
trast to other inpainting techniques that perform an exhaus-
tive search over the image, in this work we introduce a
principal components-based method that learns to recognize
patches that locally adhere to the properties of the building
being mapped, resulting in a significant performance boost
with results of indistinguishable quality. Results are demon-
strated on sequences where previous stitching and inpaint-
ing algorithms fail.

1. INTRODUCTION

As part of a vision-based architectural modeling project, we
want to capture the visual appearance of buildings via robot-
based “scanning.” Assuming a polyhedral model of a build-
ing’s structure [1, 2], a major subgoal of the task is to ob-
tain a high-fidelity texture map of each planar section of its
facade. Creating such amosaicfrom a sequence of over-
lapping images via homography estimation has been thor-
oughly studied [3, 4, 5]. However, a complicating factor
that motivated our work in [6] is the possible presence of
other, unknown objects in the scene between the camera and
building plane—e.g., trees, people, signs, poles, and other
clutter of urban environments. These create “holes” in the
mosaic by occluding parts of the building wall from partic-
ular views.

Image/video inpainting [7, 8, 9, 10], a method for im-
age restoration or object removal, offers a principled way
to fill such holes from contextual information surrounding
them either spatially or temporally. In [6] we introduced
two novel methods: (1) a technique for automatically iden-
tifying occluded regions (i.e., the areas to be filled) in build-
ing facade sequences, in contrast to existing inpainting al-

601 751

1 6

Fig. 1. Raw frames from Wolf Hall sequence (top row) and
Hullihen sequence (bottom row)

gorithms that rely on manual segmentation; and (2) a novel
spatiotemporal inpainting algorithm that combines spatial
information from pixels in a partially-completed mosaic with
temporal cues provided by images in thetimeline, or se-
quence of images captured. Like other non-parametric tex-
ture synthesis methods [8, 11], our algorithm required an
exhaustive search to identify the most likely candidate pix-
els for replacement—over both the temporal and spatial do-
mains. Though the visual results were satisfactory, for long
sequences they could be very expensive to obtain, requiring
on the order of hours to complete the inpainting procedure.

The key motivation of this work is to improve our ear-
lier algorithm by framing the search problem in inpainting
as one of learning and recognizing object classes, which is
much more efficient than traditional Sum-of-Squared Dis-
tances (SSD)-based searching. In a similar vein to this work,
eigenface methods for face identification [12] represent the
whole image as a vector of weights in a linear subspace, and
some recent techniques in image retrieval [13, 14] model the
appearance of object classes with a constellation of discrim-
inative features. Here we use Principal Component Anal-
ysis (PCA) to learn a lower dimensional representation of
image patches that facilitates easy recognition of the most
appropriate patch. Applied to building sequences, we ex-



ploit motion cues from the timeline to restrict the number
of candidate pixels that will be filled. The problem then be-
comes one of “building-patch recognition”, akin to the face
recognition methods in [12]. The most likely building pix-
els can then be efficiently retrieved from these candidates
using the PCA-based representation.

In the rest of the paper, we first explain our PCA-based
inpainting technique that searches over a much lower di-
mensional feature space compared to other exemplar based
methods. We demonstrate it on example images widely
used by the inpainting community. We then extend our syn-
thesis from the spatial domain to include temporal infor-
mation also and apply it to a vision-based application that
aims to recover texture maps of occluded building facades.
We compare these results to a previous technique and show
equally good results at vastly improved efficiency.

2. INPAINTING BY PCA-BASED RECOGNITION

In this section we present an algorithm for filling holes in
images that is built upon the work in Criminisi, Pérez, and
Toyama [8], a patch-based copying method combining ideas
from non-parametric texture synthesis and diffusion-based
inpainting. We will refer to their method asCPT inpainting
and briefly recapitulate the algorithm.

An empty target regionΩ’s pixels are filled from its
borderdΩ inward by copying square image patches from
a source regionΦ to target patchesΨp centered onp =
(x, y) ∈ dΩ. Given the next target patchΨp̂, anexemplar
patchΨq̂ is selected fromΦ and pixels are copied to the
unfilled portion of the target patchΨp̂ ∩ Ω from the cor-
responding part ofΨq̂. Letting the entire image region be
denoted byI, Ψq̂ is chosen as the source patch with the
minimum distanced (commonly the SSD) between it and
the already-filled part of the target patchΨp̂∩ (I −Ω) (nor-
malized for area). As inpainting proceedsΩ shrinks while
Φ remains constant, leaving a band of filled pixelsΩ0 − Ωt

at stept.
In the mold of [15, 8], a priority functionP (p) = C(p)D(p)

sets the order in which patches alongdΩ are filled.C(p) is
a confidenceterm that measures the amount of reliable in-
formation aroundp with the formula∑

q∈Ψp∩(I−Ω)

C(q)
|Ψp|

. Initially, C(p) = 0 ∀p ∈ Ω0 andC(p) = 1 ∀p ∈ I −Ω0.
When pixels inΨp̂ ∩Ω are filled in, their confidence values
are updated from 0 toC(p̂), having the effect of preferring
higher confidence sections ofdΩ to grow before low confi-
dence regions.D(p) is adata term proportional to the dot
product of the tangent vector todΩ at p and the gradient
vector∇p with the maximum magnitude inΨp ∩ (I − Ω).

Fig. 2. Given a set of image patches, classify them as
belonging to bulding or foreground. Note the analogy with
face recognition/detection schemes.

This encourages the extension of linear structures by boost-
ing the priorities of patches with a strong edge “flowing
into” them.

Most exemplar-based methods [11, 15] use the SSD as
the distance functiond(·, ·) between two image patches. In
addition to the lack of perceptual uniformity in RGB space,
for large search regions (as typically occurs with panoramas
or videos), this could be very inefficient. For an11 × 11
color image patch, the SSD to find the closest matching fea-
ture inΦ would require matching pairs of 363-element vec-
tors overΦ . This can be potentially unmanageable. We
therefore choose to encode image patches fromΦ as a set of
compact feature vectors in a lower dimensional eigenspace
that allows much more efficient matching.

2.1. Computing the patch eigenspace

Given several image patches fromΦ, we wish to capture
almost all the variability across those patches with as few
dimensions as possible. PCA has been a very popular di-
mensionality reduction technique widely used in recogni-
tion. It generates a set of orthonormal basis vectors, that
maximize the scatter of all training samples. In spite of
various limitations (gaussian distribution, orthogonal linear
combinations), we have found it to be simple and adequate
for the task at hand. Given an image to be inpainted and
the source regionΦ, we extractn × n patches fromΦ that
will be used to guide the inpainting. For regular inpainting,
we extracted patches at every pixel, but this can be a more
coarse sampling as we show in the timeline mosaicing ap-
plication. Typical patch sizes that we’ve used aren = 9 and
n = 11. We then create a vector out of these patches by
concatenating all 3 color channels.

PCA is then applied to the set of3n2-element vectors
to build the eigenspace of patches that capture the statistics
of these image patches. A similar method was also used in
PCA-SIFT [16] to encode SIFT features for image retrieval
applications. After PCA, eachn×n patch is expressed as a
vector of coordinates along the firstk principal components.
The value ofk is chosen based on the decreasing magnitude
of eigenvalues as well as empirical evaluation of the qual-
ity of reconstruction. Given a new high-dimensional patch,
it is projected into feature space, where euclidean distance
between points can be used to measure similarity.



(a) (b)

Fig. 3. (a) KLT features labeled as RANSAC inliers (green)
and outliers (red) can be used to extract training examples.
(b) Plot of first 3 principal components in feature space for
the training set

3. PCA-BASED TIMELINE INPAINTING FOR
MOSAICING

In this section we present an efficient algorithm for fill-
ing holes in sequence-based mosaics using the PCA-based
recognition scheme. The goal of the application is to con-
struct high-fidelity texture maps of building facades from an
image sequence, even though parts of the building might be
occluded by foreground objects such as trees or signs in a
majority or even all of the views. Assuming that the build-
ing plane accounts for the majority of pixels in the sequence,
with robust methods we can estimate the dominant motion
of the building and stabilize it against the camera motion. If
the foreground objects are small or fleeting, a temporal me-
dian filter can effectively recover the background from the
stabilized sequence. Here we describe how our recognition-
based inpainting method can efficiently recover the back-
ground even when these assumptions do not hold.

3.1. Pre-processing

Image registration is carried out to warp each frame in the
sequence to a mosaic-aligned frameWt. Every location
p = (x, y) in the mosaic reference frame has a set of pixels
from the warped images{Wt(p)} associated with it which
we call itstimelineT (p). The size of each timeline|T (p)|
may vary from 0 toN depending whether the pixel atp was
imaged or not in each frame. Intuitively, since all pixels
on the building facade exhibit the dominant motion, they
should appear stationary in the mosaic whereas foreground
objects such as trees and signs move due to parallax. This
variability is measured using the median absolute deviation
(MAD), and a high MAD atp indicates an outlier pixel in
the median mosaicMmed(p) that needs to be inpainted.

Given that eachT (p) contains an unknown mixture of
background and foreground object pixels, our goal is to cor-
rectly pick or estimate each background pixelM(p) where
|T (p)| > 0, forming a building mosaicM. Our inpainting
framework from the previous section fits in well with the so-
lution of this problem. The temporal information available

from the timeline has already limited the possible number
of candidate pixels that can be copied into the mosaic. The
appearance matching problem has now become one of “rec-
ognizing” the appropriate background from a set of patches
consisting of building and foreground objects (Fig. 2).

As explained in the previous section, we use PCA to
project a set of labeled training image patches into a lower
dimensional feature subspace. The positive examples of
building patches are automatically extracted fromΦ by uni-
formly sampling from11 × 11 grids. The negative patches
belonging to trees, grass and so on could either be marked
manually in a semi-supervised learning fashion or automati-
cally inferred from the RANSAC outliers in the image regis-
tration step (Fig 3a). Since the labeling of negative training
examples is performed only once and offline, it doen not af-
fect the run time. The original patches used to construct the
eigenspace can be discarded after this step.

3.2. Timeline Inpainting by Recognition

Let the MAD outlier pixels be the target regionΩ and the
rest of the median mosaicMmed be the source regionΦ.
Our problem differs from pure spatial inpainting in that the
timeline T for eachp ∈ Ω, provided it contains at least
one background pixel, should constrain the filling process.
Thus, our major goals are to determine which, if any, pix-
els inT (p) are from the building background, and to inte-
grate this information into the inpainting process. Letting
T (Ψp) = {Ψ1

p, . . . ,Ψ|T (p)|
p } be the timeline of patches

centered onp, we create atimeline mosaicMtime by mod-
ifying CPT inpainting in three major ways:

1. In the first of two stages, each patch-wise pixel copy
to Ω comesfrom one timeline patchΨ∗

p̂ ∈ T (Ψp̂)
maximally likely to have come from the building

2. During stage one, the updated confidencesC(p) of
newly-filled pixels are set to the motion-basedback-
ground likelihoodsp∗motion(p) of the pixels inΨ∗

p̂

3. If the mean background likelihood̄pmotion(Ψt
p̂) for

every patch inT (Ψp̂) is below a thresholdτmotion ,
Ψp̂ is not filled at that time. Stage two begins when
all remaining areas ofΩ meet this definition, and con-
sists simply of CPT inpainting

Each of these three modifications is explained below:

Timeline patch selectionConsider a patchΨp̂ in the mo-
saicMtime that is the next to be inpainted. Pixels in its
unfilled partΨp̂ ∩Ω will come from the corresponding part
of one timeline patchΨ∗

p̂∩Ω. We copy pixels from the time-
line rather thanΦ to maximize correctness, improve feature
alignment, and allow for the retention of unique features
not present inΦ. To pick aΨ∗

p̂ that is most likely to contain
building pixels rather than foreground pixels, we rely upon



two cues: (1)Appearance-based similarityto other features
in the presumed “all-building” regionΦ; and (2)Minimal
motion energy(indicating no occlusion in that frame).

Most buildings have repeated patterns such as windows,
doors, columns, bricks, etc., so building (as opposed to fore-
ground) timeline patches inΩ are likely to have a similar
appearance to features inΦ. However, appearance match-
ing alone is a less reliable indicator of “buildingness” in
homogeneous areas, and can be improved by incorporat-
ing the likelihood that motion occurred in that patch in a
particular timeline frame. By combining the unfilled por-
tions of each timeline patch with the filled part from the
mosaic to create a timeline ofcomposite patchesT (Ψ̃p̂) =
{(Ψt

p̂ ∩Ω)∪ (Ψp̂ ∩ (I −Ω))}, we jointly measure patcht’s
building similarity and motion energy with the formula

B(Ψ̃t
p̂) = papp(Ψ̃t

p̂)p̄motion(Ψt
p̂)

, where the probabilities measure the likelihood of a patch
belonging to the background building based on appearance
and motion cues respectively. Pixels are then copied from
Ψ∗

p̂ determined by∗ = argmaxt B(Ψ̃t
p̂).

The evaluation ofpapp can be expressed in a probabilis-
tic framework using the N-Nearest Neighbor rule. Given a
test patchΨy, we can classify it as belonging to classν̂ that
has the maximum posterior probability:

ν̂ = argmaxν∈V P (ν|Ψy)

. V is the set of classes and in our case would be building
and foreground. A straightforward method of computing
the likelihood for each class is based on a voting scheme
that returns the fraction ofN -neighbors belonging to that
class, but this is sub-optimal if the number of training im-
age patches from each class is not guaranteed to be approxi-
mately the same. To evaluate the appearance properties, we
first project the patchΨy into thek-dimensional eigenspace.
Let (< x1, V (x1) > . . . < xN , V (xN ) >) be theN near-
est neighbors and their associated labels from the training
examples. Then we return a distance weighted likelihood

papp(Ψy) =
∑N

i=1 wi(Ψy,xi)δ(Building , V (xi))∑N
i=1 wi(Ψy,xi)

wherew(·, ·) is the reciprocal of the euclidean distance be-
tween the two patches andδ(a, b) = 1 if a = b and 0
otherwise. Compared to [6], computing distances in a 25-
dimensional eigenspace that captures almost all the variance
across the patches is much more efficient than performing
the SSD over the whole timeline for11× 11 patches.

The intersection of a pair of successive, thresholded dif-
ference images was suggested in [17] as a method for iden-
tifying foreground pixels. By converting the warped images
to grayscale and scaling their intensity values to[0, 1] to get
{W′

t}, we can adapt this approach to define a motion energy

or foreground imageat timet asFt = (|W′
t − W′

t−1|) ⊗
(|W′

t+1−W′
t|) where| · | is the absolute value and⊗ is the

pixelwise product.1 Letting µ be the mean foreground im-
age value over allt, we define thebackground likelihoodfor
pixel p in warped imaget aspt

motion(p) = e−Ft(p)/µ, and
p̄motion(Ψt

p̂) as the mean pixelwise background likelihood
over all pixels inΨt

p̂ ∩ Ω.

Confidence termThe background likelihoodsp∗motion(Ψp̂∩
Ω) are copied as the confidence values of the newly filled-in
pixels inΨp̂ ∩Ω. This tends to limit the propagation of bad
choices in subsequent iterations—i.e., patches bordering ar-
eas of higher motion energy are bypassed for low motion
energy areas first. The decaying confidence scheme of CPT
inpainting does not apply in our case because timeline patch
pixels in the interior ofΩ are no less reliable than those near
its edges.

Stopping criterion With no patch inT (Ψp̂) from the back-
ground, there are no temporal constraints on what pixels to
fill it with. Because unique features inΩ may not be simi-
lar to any patches inΦ, we detect all-foreground timelines
solely on the basis of excessive motion energy. Specifically,
if for every patch inT (Ψp̂) the mean background likeli-
hoodp̄motion(Ψt

p̂) < τmotion , Ψp̂ is not filled. Subsequent
inpainting in adjacent areas may allow some skipped pixels
to be filled later, but stage one halts when this condition is
true at every remainingp ∈ Ω. The holes that are left are
generally much smaller thanΩ0, with more building struc-
ture revealed, and thus stage two can consist of pure CPT
inpainting with much better results than if it had been run in
place of stage one.

4. RESULTS

We show the result of our facade construction algorithm
on image sequences that would not work well with current
stitching or inpainting algorithms . The Wolf Hall sequence
consists of 17 subsampled images from an 801 frame se-
quence, and captured at 30 fps from a camera moving par-
allel to a building facade. Examples of these are shown in
the top row of Fig. 1. Several objects at different depths
occlude parts of the building including trees, bushes, and a
large sign. The sequence was taken in early fall and some
of the leaves closely match the color of the brick, mak-
ing the case for highly discriminative encoding - even in
a low dimensional space. We have found our technique to
be robust to these effects . The Hullihen Hall sequence is
a short sequence of 6 images taken by a camera, meant to
illustrate the efficacy of our technique in recovering even
unanimously occluded building regions. The first and last
frames, shown in the bottom row of Fig. 1, emphasize how
some parts of the facade behind the bushes are never seen

1This of course excludes the timeline’s first and last images
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Fig. 4. (a) Median mosaic outliers for Wolf Hall sequence to be inpainted; (b) Result of PCA-based timeline inpainting
followed by CPT inpainting after affine rectification (c) Median mosaic outliers for Hullihen Hall sequence (d) Result of
inpainting and rectification as in (b)

throughout the sequence.
Fig. 4 shows the result of our recognition-based inpaint-

ing algorithm that looks into the timeline of image sequences.
The initial set of positive training patches to construct the
eigenspace was selected fromΦ. The negative examples
of trees and leaves were extracted from a manually marked
section in a single frame. RANSAC outliers could also be
used for automatic segmentation of negative examples. In
both mosaics, the ground plane outside the region of the fa-
cade was excluded from timeline inpainting.

Fig. 5 compares the result of our technique to [6]. Com-
pared to [6] that used optimized SSD code in C as the dis-
tance function, our recognition-based approach was as much
as 30 times faster even with unoptimized Matlab code. There
are a couple of factors that have contributed to this im-
provement. Firstly, the reduced number of dimensions from
363-element vectors tok = 25 dimensions in the PCA
eigenspace, while still retaining the distinctiveness of the
patch improves the search procedure. Secondly, by our use
of temporal information, we have at most|T (p)| patches
that can be copied to the mosaic atp. Since these frames are

(a) (b)

Fig. 5. Comparison of solutions in a problem area around
the central window of the Wolf Hall Sequence. (a) Result of
timeline inpainting using SSD measure; (b) Result of time-
line inpainting using the PCA-based recognition scheme.
Results are comparably good, but the runtime for (b) was
many times faster.

all aligned in the mosaic frame, it is theoretically enough to
give a binary classification of{Builiding, Foreground}.
However, by usingN = 10 nearest neighbors, we are able
to give a probabilistic likelihood without having to do the
fine-grained appearance matching over every pixel as is done
with the SSD function.



5. CONCLUSION

We have presented a novel approach to inpainting using a
PCA-based recognition as opposed to exhaustive searching.
We claim that representing image patches in a lower dimen-
sional search space can vastly improve the efficiency of the
search, especially in spatio-temporal analysis. We demon-
strate the effectiveness of our technique in removing occlu-
sions of building facades in image sequences using a com-
bination of temporal and spatial inpainting.

There are several aspects of the problem that is the cur-
rent focus of research. An important unaddressed image
processing issue is the photometric artifacts that can be in-
troduced due to shadows or different lighting conditions through
a long sequence. Much work has been done in the face
recognition community to make PCA robust to illumination.
We would like to examine the adaptability of those tech-
niques to smaller patches. We could also potentially have
more speedup with better searching to find theN -nearest
neighbors in the PCA eigenspace. Methods such as k-means
or locality-sensitive hashing can be used to index into the
feature vectors. We are also examining low-level texture-
based segmentation for recovery of the building planes that
will be fed to the inpainting.
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