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ABSTRACT

We present a technique for efficiently constructing a “clean”
texture map of a partially occluded building facade from a
series of images taken by a moving camera. After a robust
registration procedure, building regions blocked by trees,
signs, people, and other foreground objects are automati- 55
cally inferred via the median absolute deviation of colors
from different source images mapping to the same mosaic
pixels. In previous work we extended an existing non-parame
inpainting algorithm for filling such holes to incorporate
spatiotemporal appearance and motion cues in order to cor-
rectly replace the outlier pixels of the texture map. In con- ®§
trast to other inpainting techniques that perform an exhaus-
tive search over the image, in this work we introduce a #
principal components-based method that learns to recognize™ ===
patches that locally adhere to the properties of the building 1
being mapped, resulting in a significant performance boostrig. 1. Raw frames from Wolf Hall sequence (top row) and
with results of indistinguishable quality. Results are demon- jjihen sequence (bottom row)

strated on sequences where previous stitching and inpaint-

ing algorithms fail.

gorithms that rely on manual segmentation; and (2) a novel
1. INTRODUCTION spatiotemporal inpainting algorithm that combines spatial
information from pixels in a partially-completed mosaic with
As part of a vision-based architectural modeling project, we temporal cues provided by images in tti@eling or se-
want to capture the visual appearance of buildings via robot-guence of images captured. Like other non-parametric tex-
based “scanning.” Assuming a polyhedral model of a build- ture synthesis methods! [8,111], our algorithm required an
ing’s structure[[L[ 2], a major subgoal of the task is to ob- exhaustive search to identify the most likely candidate pix-
tain a high-fidelity texture map of each planar section of its els for replacement—over both the temporal and spatial do-
facade. Creating suchraosaicfrom a sequence of over- mains. Though the visual results were satisfactory, for long
lapping images via homography estimation has been thor-sequences they could be very expensive to obtain, requiring
oughly studied[[B3[4.15]. However, a complicating factor on the order of hours to complete the inpainting procedure.
that motivated our work inJ6] is the possible presence of The key motivation of this work is to improve our ear-
other, unknown objects in the scene between the camera anéler algorithm by framing the search problem in inpainting
building plane—e.qg., trees, people, signs, poles, and othefas one of learning and recognizing object classes, which is
clutter of urban environments. These create “holes” in the much more efficient than traditional Sum-of-Squared Dis-
mosaic by occluding parts of the building wall from partic- tances (SSD)-based searching. In a similar vein to this work,
ular views. eigenface methods for face identification![12] represent the
Image/video inpainting [7.18.19,"10], a method for im- whole image as a vector of weights in a linear subspace, and
age restoration or object removal, offers a principled way some recent techniques in image retrieval [13, 14] model the
to fill such holes from contextual information surrounding appearance of object classes with a constellation of discrim-
them either spatially or temporally. 1a2][6] we introduced inative features. Here we use Principal Component Anal-
two novel methods: (1) a technique for automatically iden- ysis (PCA) to learn a lower dimensional representation of
tifying occluded regions (i.e., the areas to be filled) in build- image patches that facilitates easy recognition of the most
ing facade sequences, in contrast to existing inpainting al-appropriate patch. Applied to building sequences, we ex-



ploit motion cues from the timeline to restrict the number

of candidate pixels that will be filled. The problem then be- m RS
comes one of “building-patch recognition”, akin to the face . 131 IIH
recognition methods i [12]. The most likely building pix- o

els can then be efficiently retrieved from these candidates ) . )
using the PCA-based representation. Fig. 2. Given a set of image patches, classify them as

In the rest of the paper, we first explain our PCA-based Pelonging to bulding or foreground. Note the analogy with
inpainting technique that searches over a much lower di- face recognition/detection schemes.
mensional feature space compared to other exemplar based
methods. We demonstrate it on example images widely
used by the inpainting community. We then extend our syn-
thesis from the spatial domain to include temporal infor-

mation also and apply it to a vision-based application that ,
aims to recover texture maps of occluded building facades. M.OSt exemplar-based methods L1 . 15] use the SSD as
the distance functiod(-, -) between two image patches. In

We compare these results to a previous technique and show ~ . . S
equally good results at vastly improved efficiency. addition to the lack of perceptual uniformity in RGB space,

for large search regions (as typically occurs with panoramas
or videos), this could be very inefficient. For amh x 11
2. INPAINTING BY PCA-BASED RECOGNITION color image patch, the SSD to find the closest matching fea-
ture in® would require matching pairs of 363-element vec-
In this section we present an algorithm for filling holes in tors over® . This can be potentially unmanageable. We
images that is built upon the work in CriminisieRz, and  therefore choose to encode image patches fbaas a set of
Toyamal[8], a patch-based copying method combining ideascompact feature vectors in a lower dimensional eigenspace
from non-parametric texture synthesis and diffusion-basedthat allows much more efficient matching.
inpainting. We will refer to their method &PT inpainting
and briefly recapitulate the algorithm.
An empty target regio)'s pixels are filled from its

borderdS} inward by copying square image patches from Gjven several image patches frofy we wish to capture
a source regiord to target patched;, centered orp = almost all the variability across those patches with as few
(z,y) € dQ. Given the next target patchy, anexemplar  dimensions as possible. PCA has been a very popular di-
patch ¥ is selected fromp and pixels are copied to the  mensijonality reduction technique widely used in recogni-
unfilled portion of the target patcir, N {2 from the cor-  tjon. It generates a set of orthonormal basis vectors, that
responding part of4. Letting the entire image region be  maximize the scatter of all training samples. In spite of
denoted byZ, ¥4 is chosen as the source patch with the yarious limitations (gaussian distribution, orthogonal linear
minimum distancel (commonly the SSD) between it and  combinations), we have found it to be simple and adequate
the already-filled part of the target patéfy N (Z —2) (nor- ~ for the task at hand. Given an image to be inpainted and
malized for area). As inpainting procee@sshrinks while  the source regio®, we extract: x n patches fromp that
@ remains constant, leaving a band of filled pix@ls— Q. will be used to guide the inpainting. For regular inpainting,
at stepr. we extracted patches at every pixel, but this can be a more
In the mold of [15.. 8], a priority functiod*(p) = C'(p)D(p) coarse sampling as we show in the timeline mosaicing ap-

sets the order in which patches alaifg are filled.C(p) is  plication. Typical patch sizes that we've used are 9 and
a confidenceerm that measures the amount of reliable in- ,, — 11. We then create a vector out of these patches by

This encourages the extension of linear structures by boost-
ing the priorities of patches with a strong edge “flowing
into” them.

2.1. Computing the patch eigenspace

formation aroung with the formula concatenating all 3 color channels.
C(a) PCA is then applied to the set 8fi2-element vectors
Z ! to build the eigenspace of patches that capture the statistics
q€V,N(Z-9Q) Wp| of these image patches. A similar method was also used in

PCA-SIFT [16] to encode SIFT features for image retrieval
. Initially, C(p) =0Vp € Qp andC(p) =1Vp € T — Q. applications. After PCA, each x n patch is expressed as a
When pixels in; N Q2 are filled in, their confidence values vector of coordinates along the figsprincipal components.
are updated from 0 t@'(p), having the effect of preferring  The value oft is chosen based on the decreasing magnitude
higher confidence sections @f2 to grow before low confi-  of eigenvalues as well as empirical evaluation of the qual-
dence regionsD(p) is adataterm proportional to the dot ity of reconstruction. Given a new high-dimensional patch,
product of the tangent vector 2 at p and the gradient it is projected into feature space, where euclidean distance
vectorV, with the maximum magnitude i, N (Z — Q). between points can be used to measure similarity.



from the timeline has already limited the possible number
of candidate pixels that can be copied into the mosaic. The
appearance matching problem has now become one of “rec-
ognizing” the appropriate background from a set of patches
consisting of building and foreground objects (fip. 2).

As explained in the previous section, we use PCA to
project a set of labeled training image patches into a lower

(b) dimensional feature subspace. The positive examples of

Fig. 3. (a) KLT features labeled as RANSAC inliers (green) building patches are automatically extracted frbrby uni-

: - formly sampling froml1 x 11 grids. The negative patches
and outliers (red) can be used to extract training examples.belon 10 o trees. arass and so on could either be marked
(b) Plot of first 3 principal components in feature space for ging > 9 X . . .
the training set manually in a semi-supervised learning fashion or automati-

cally inferred from the RANSAC outliers in the image regis-

tration step (Fi§ Ba). Since the labeling of negative training

3. PCA-BASED TIMELINE INPAINTING FOR examples is performed only once and offline, it doen not af-

MOSAICING fect the run time. The original patches used to construct the
eigenspace can be discarded after this step.

In this section we present an efficient algorithm for fill-
ing holes in sequence-based mosaics using the PCA-based.2. Timeline Inpainting by Recognition

recognition scheme. The goal of the application is to con- . . .
struct high-fidelity texture maps of building facades from an Let the MAD ou_tller pixels be the target regidh an(_JI the
rest of the median mosail,,,.; be the source regiofb.

image sequence, even though parts of the building might be ) B
occluded by foreground objects such as trees or signs in aQur ;_)roblem differs from pure sp.at|al !npalntlr_1g in that the
majority or even all of the views. Assuming that the build- timeline 7" for eachp € , provided '.t conta_m; at least
ing plane accounts for the majority of pixels in the sequence,one backgrou'nd pixel, should constrfsun the' f"mg ProCess.
with robust methods we can estimate the dominant motion Thu_s, our major goals are _to_determme which, if any, pix-
of the building and stabilize it against the camera motion. If els mT(_p)_ are from th_e buﬂdmg ba_ck_ground, and to mFe-
the foreground objects are small or fleeting, a temporal me-grate this information "ng)fhe mpamt!ng process. Letting
dian filter can effectively recover the background from the 7 (¥p) = {¥p, ..., ¥y ™71} be the timeline of patches
stabilized sequence. Here we describe how our recognition-c€ntered om, we create dimeline mosaivl;,. by mod-
based inpainting method can efficiently recover the back- 7¥Ying CPT inpainting in three major ways:

ground even when these assumptions do not hold. 1. In the first of two stages, each patch-wise pixel copy

to {2 comesfrom one timeline patchy € 7(Vp)

3.1. Pre-processing maximally likely to have come from the building
Image registration is carried out to warp each frame in the 2. During stage one, the updated confiden€ép) of
sequence to a mosaic-aligned fraié;. Every location newly-filled pixels are set to the motion-badeaick-
p = (z,y) in the mosaic reference frame has a set of pixels ground likelihood;, ;.. (p) Of the pixels inW ¢

from the warped imagefW,(p)} associated with it which
we call itstimeline7 (p). The size of each timeling (p)|
may vary from 0 taV depending whether the pixel ptwas
imaged or not in each frame. Intuitively, since all pixels
on the building facade exhibit the dominant motion, they
should appear stationary in the mosaic whereas foreground
objects such as trees and signs move due to parallax. This o ] )
variability is measured using the median absolute deviation ~ Each of these three modifications is explained below:
(MAD), and a high MAD atp indicates an outlier pixel in  Timeline patch selectionConsider a patci¥j in the mo-
the median mosaidl,,,.(p) that needs to be inpainted. saic My;,,. that is the next to be inpainted. Pixels in its
Given that eacl¥ (p) contains an unknown mixture of  unfilled part®; N Q will come from the corresponding part
background and foreground object pixels, our goal is to cor- of one timeline patch 5 N<2. We copy pixels from the time-
rectly pick or estimate each background piXd(p) where line rather thanb to maximize correctness, improve feature
|7 (p)| > 0, forming a building mosaidI. Our inpainting alignment, and allow for the retention of unique features
framework from the previous section fits in well with the so- not present inb. To pick a¥% that is most likely to contain
lution of this problem. The temporal information available building pixels rather than foreground pixels, we rely upon

3. If the mean background Iikelihoqﬁmtion(\lf%) for
every patch inZ (V) is below a threshold,,,tion.
¥ is not filled at that time. Stage two begins when
all remaining areas d2 meet this definition, and con-
sists simply of CPT inpainting



two cues: (1)Appearance-based similaritp other features  or foreground imagat timet asF; = (|W; — W,_,|) ®

in the presumed “all-building” regio®; and (2)Minimal (Wi, — Wi|) where|- | is the absolute value andlis the

motion energyindicating no occlusion in that frame). pixelwise prodmﬂ Letting i« be the mean foreground im-
Most buildings have repeated patterns such as windows,age value over afl, we define thdackground likelihoodor

doors, columns, bricks, etc., so building (as opposed to fore-pixel p in warped image asp?,...,(P) = e F:®)/1 and

ground) timeline patches ift are likely to have a similar pmotion(\lfg) as the mean pixelwise background likelihood

appearance to featuresdn However, appearance match- over all pixels in\p% N Q.

ing alone is a less reliable indicator of “buildingness” in Confidence termThe background likelihoods;, ..., (V5N

_homogeneo_us areas, and_can be |mpr(_)ved by mcor_porat-Q) are copied as the confidence values of the newly filled-in
ing the likelihood that motion occurred in that patch in a

articular timeline frame. Bv combining the unfilled por- pixels in¥; N Q. This tends to limit the propagation of bad
? : uf ! h t! i .t hy ith tr|1 'f% q u tlf pth choices in subsequent iterations—i.e., patches bordering ar-
rlr?(:ssai% tﬁicreatltrenz L?rﬁeﬂi:obv:r:posi; pl)a?chgg'r( \i/rc))m € eas of higher motion energy are bypassed for low motion
f) = . . .
{(\I/% M) U (W N (Z — Q))}, we jointly measure patcs energy areas first. The decaying confidence scheme of CPT

. b N : : inpainting does not apply in our case because timeline patch
building similarity and motion energy with the formula pixels in the interior of2 are no less reliable than those near

B(¥}) = papp () Punotion (V) fts edges.
o o Stopping criterion With no patch inZ (¥ ) from the back-
, where the probabilities measure the likelihood of a patch gqng; there are no temporal constraints on what pixels to
belonging to the background building based on appearanc; it with. Because unique features i may not be simi-
and motion cues respectively. Pixels are then copied from 5, ¢4 any patches i, we detect all-foreground timelines

* H _ It . . . e
w3 determined by = argmax, B(Vy). solely on the basis of excessive motion energy. Specifically,

~ The evaluation op,,,, can be expressed in a probabilis- i ¢4 every patch in7 (V) the mean background likeli-
tic framework using the N-Nearest Neighbor rule. Given a 0B motion (WL) < Tmotion, Up is Not filled. Subsequent
motion motion P .

t

oo : p

test patchly, we can classify it as belonging to clasthat - jnainting in adjacent areas may allow some skipped pixels
has the maximum posterior probability:

to be filled later, but stage one halts when this condition is
true at every remaining € 2. The holes that are left are
generally much smaller than,, with more building struc-
. V is the set of classes and in our case would be building ture revealed, and thus stage two can consist of pure CPT
and foreground. A straightforward method of computing inpainting with much better results than if it had been run in
the likelihood for each class is based on a voting schemeplace of stage one.
that returns the fraction aV-neighbors belonging to that
class, but this is sub-optimal if the number of training im- 4. RESULTS
age patches from each class is not guaranteed to be approxi-
mately the same. To evaluate the appearance properties, Weve show the result of our facade construction algorithm
first project the patcky, into thek-dimensional eigenspace. on image sequences that would not work well with current
Let (< x1,V(x1) > ... < xn,V(xn) >) be theN near-  stitching or inpainting algorithms . The Wolf Hall sequence
est neighbors and their associated labels from the trainingconsists of 17 subsampled images from an 801 frame se-
examples. Then we return a distance weighted likelihood quence, and captured at 30 fps from a camera moving par-
N o allel to a building facade. Examples of these are shown in
> _im1 wi(Vy, Xi)0(Building, V(x;)) the top row of Fig[ L. Several objects at different depths
Zf’zl w; (Py, x;) occlude parts of the building including trees, bushes, and a
. . . . large sign. The sequence was taken in early fall and some
wherew(-, -) is the reciprocal of the euc_lldean distance be- 4 the leaves closely match the color of the brick, mak-
tween the two patches anifa,b) = 1if a = b and0 ing the case for highly discriminative encoding - even in
otherwise. Compared t0/[6], computing distances in a 25- 5 |0\ dimensional space. We have found our technique to
dimensional eigenspace that captures almost all the variancgs gpust to these effects . The Hullihen Hall sequence is
across the patches is chh more efficient than performingy gport sequence of 6 images taken by a camera, meant to
the SSD over the whole timeline fait x 11 patches. _illustrate the efficacy of our technique in recovering even
The intersection of a pair of successive, thresholded dif- |, animously occluded building regions. The first and last
ference images was suggested.in [17] as a method for idenf ames shown in the bottom row of F[d. 1, emphasize how

tifying foreground pixels. By converting the warped images gome parts of the facade behind the bushes are never seen
to grayscale and scaling their intensity valueftd] to get

{W}, we can adapt this approach to define a motion energy !This of course excludes the timeline’s first and last images

U = argmax, .y P(v|¥y)

Papp(Py) =




() (d)

Fig. 4. (a) Median mosaic outliers for Wolf Hall sequence to be inpainted; (b) Result of PCA-based timeline inpainting
followed by CPT inpainting after affine rectification (c) Median mosaic outliers for Hullihen Hall sequence (d) Result of
inpainting and rectification as in (b)

throughout the sequence.

Fig.[4 shows the result of our recognition-based inpaint-
ing algorithm that looks into the timeline of image sequences.
The initial set of positive training patches to construct the
eigenspace was selected frabn The negative examples
of trees and leaves were extracted from a manually marked -
section in a single frame. RANSAC outliers could also be @) (b)
used for automatic segmentation of negative examples. In

both mosaics, the ground plane outside the region of the fa-Fig. 5. Comparison of solutions in a problem area around
cade was excluded from timeline inpainting_ the central window of the Wolf Hall Sequence. (a) Result of

timeline inpainting using SSD measure; (b) Result of time-

pared to([6] that used optimized SSD code in C as the dis-line inpainting using the PCA-based recognition scheme.
tance function, our recognition-based approach was as muciR€sults are comparably good, but the runtime for (b) was
as 30 times faster even with unoptimized Matlab code. TherdM@ny times faster.

are a couple of factors that have contributed to this im-

provement. Firstly, the reduced number of dimensions from | gjigned in the mosaic frame, it is theoretically enough to
363-element vectors té = 25 dimensions in the PCA  give a binary classification of Builiding, Foreground}.
eigenspace, while still retaining the distinctiveness of the ygvever by usingV = 10 nearest neighbors, we are able
patch improves the search procedure. Secondly, by our usg, give a probabilistic likelihood without having to do the

of temporal information, we have at mast(p)| patches  fine_grained appearance matching over every pixel as is done
that can be copied to the mosaigatSince these frames are  \yith the SSD function.

Fig.[3 compares the result of our technique_io [6]. Com-



5. CONCLUSION

(8]

We have presented a novel approach to inpainting using a
PCA-based recognition as opposed to exhaustive searching.

We claim that representing image patches in a lower dimen-

A. Criminisi, P. Ferez, and K. Toyama, “Region filling
and object removal by exemplar-based image inpaint-
ing,” IEEE Trans. Image Processingol. 13, no. 9,
2004.

sional search space can vastly improve the efficiency of the [9] J. Jia, T. Wu, Y. Tai, and C. Tang, “Video repairing:
search, especially in spatio-temporal analysis. We demon-

strate the effectiveness of our technique in removing occlu-

sions of building facades in image sequences using a com-
bination of temporal and spatial inpainting.

There are several aspects of the problem that is the cur-

[10]

rent focus of research. An important unaddressed image
processing issue is the photometric artifacts that can be in-
troduced due to shadows or different lighting conditions throygh] A. Efros and W. Freeman, “Image quilting for texture
a long sequence. Much work has been done in the face
recognition community to make PCA robust to illumination.
We would like to examine the adaptability of those tech- [12]

nigues to smaller patches. We could also potentially have

more speedup with better searching to find flienearest

neighbors in the PCA eigenspace. Methods such as k-mean
or locality-sensitive hashing can be used to index into the
feature vectors. We are also examining low-level texture-
based segmentation for recovery of the building planes that

will be fed to the inpainting.
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