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Abstract— We present a vision- and ladar-based approach to
autonomous driving on rural and desert roads that has been tested
extensively in a closed-loop system. The vision component uses
Gabor wavelet filters for texture analysis to find ruts and tracks
from which the road vanishing point can be inferred via Hough-
style voting, yielding a direction estimate for steering control.
The ladar component projects detected obstacles along the road
direction onto the plane of the front of the vehicle and tracks
the 1-D obstacle “gap” due to the road to yield a lateral offset
estimate. Several image- and state-based tests to detect failure
conditions such as off-road poses (i.e., there is no road to follow)
and poor lighting due to sun glare or distracting shadows are also
explained. The system’s efficacy is demonstrated with full control
of a vehicle over 10+ miles of difficult roads at up to 25 mph, as
well as analysis of logged data in diverse situations.

I. INTRODUCTION

With the running of the DARPA Grand Challenge (DGC)
robot races in March, 2004 and October, 2005, there has been
a heightened interest in algorithms for autonomously following
“difficult” unpaved paths and roads. Nearly all of the 2004 and
2005 courses were narrowly constrained to a series of flat or
hilly desert roads, many of which were unpaved and offered
little color contrast to the surrounding sandy environment.
The DGC courses also went through roadless areas, requiring
sensors and methods for general obstacle avoidance and slope
analysis as studied in [1], [2], and thus require some decision
mechanism as to whether a vehicle is on- or off-road.

In this paper, we describe a perceptual module for following
marginal roads that uses a monocular, grayscale camera in
conjunction with a SICK LMS ladars to rapidly obtain an
estimate of oncoming road structure and transmit appropriate
steering and throttle commands to the vehicle controller. The
module, which we will call VP FOLLOW, was developed to
operate as part of the overall system for the 2005 DGC team
of Caltech, and functions related to higher-level navigation,
structural map update, off-road steering, direct control of the
vehicle, hardware fault monitoring, etc. reside in modules
developed by other team members. In the 2005 DGC, the
ultimate action taken by the vehicle in any given situation was
a complex function of its state and sensor inputs that is beyond
the scope of this paper to describe; the full system is covered
in [3]. Thus, we focus here on the workings of VP FOLLOW

in isolation and in conjunction with two simplified versions of
the vehicle controller which essentially allow it to completely
control the vehicle.

Many complementary strategies for visual road following
have been developed based on certain assumptions about the
characteristics of the road scene. For example, edge-based
methods such as those described in [4], [5], [6] are often used
to identify lane lines or road borders, which are fit to a model
of the road curvature, width, and so on. These algorithms
typically work best on well-engineered roads such as highways

which are paved and/or painted, resulting in a wealth of high-
contrast contours suited for edge detection. Another popular set
of methods for road tracking are region-based [6], [7], [8], [9].
These approaches use characteristics such as color or texture
measured over local neighborhoods in order to formulate and
threshold on a likelihood that pixels belong to the road area
vs. the background. When there is a good contrast for the cue
chosen, there is no need for the presence of sharp or unbroken
edges, which tends to make these methods more appropriate
for unpaved rural roads.

We have found empirically that many desert road scenes
present difficulties for these approaches, as for example a
dirt road through a dry environment is delineated by neither
strong sharp edges nor contrasting local color or texture
characteristics (e.g., Figure 1(a)). One cue that often identifies
such roads unambiguously, however, is their overall banding
pattern. This banding, often due to ruts and tire tracks left
by previous vehicles driven by humans who knew the way, is
aligned with the road direction and thus most apparent because
of the strong grouping cue imposed by its vanishing point. The
percept of the vanishing point is reinforced by other oriented
texture such as road border intensity edges or painted lines
if they are present, and thus is an almost invariant feature of
road images taken from the driver’s perspective regardless of
road width or surface properties.

For a straight road segment on planar ground, there is
a unique vanishing point associated with the road. Its hor-
izontal image position indicates the road direction, and its
vertical position marks the horizon line of the road plane (see
Figure 1(d) for an example of VP FOLLOW’s output on the
previously referenced image). The significance of the former,
of course, is that the difference between it and the vehicle’s
current direction of travel yields an angular error suitable for
input to a low-level steering control and acceleration module.
As the vanishing point is associated with the road’s tangent,
there is no unique vanishing point for curving or undulating
road segments [10]. One empirical result we show here is
that a constantly updated “mean” vanishing point tangent to
approximately the middle of the curve ahead–that is, only
a fast-changing linear shape estimate–suffices (along with a
lateral offset control discussed below) to negotiate non-trivially
curved roads at moderate vehicle speeds.

In addition to the image-derived direction information, the
second key part of VP FOLLOW is extraction of the vehicle’s
lateral displacement from the road midline. Alignment of
vehicle direction with the road direction does not assure that
the vehicle is on the road–only that is is moving parallel to it.
Without a corrective centering impulse, the vehicle may drift
off of a straight road over time or cut off or overshoot curves.
Image-based road segmentation is one possible approach here
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Fig. 1. (a) Captured road image; (b) Dominant orientation at each pixel ([0, π] radians → [0, 255] intensity values); (c) Vote function for
vanishing point; (d) Distribution of particles and estimated vanishing point location with horizon line indicated

[7], [9], and we have experimented with several methods using
the vanishing point as a powerful shape constraint [11], [12],
but ultimately have found them insufficiently robust. Rather,
VP FOLLOW uses a simple obstacle map derived from SICK
LMS ladars to estimate the lateral offset of the road midline
relative to the vehicle. By tracking the 1-D “gap” between
obstacles (positive and/or negative) on the left and right sides
of the road, the vehicle can center itself while decreasing
directional error. This approach is insensitive to the road
surface material and lighting conditions, and there is no need
to tune, learn, or adapt parameters as the algorithm runs on
a variety of roads. In flat areas without obstacles to constrain
lateral offset (i.e., only visual appearance demarcates the road),
any drifting is of less concern than elsewhere because by
definition the off-road area is less hazardous.

A critical system state is whether the vehicle currently sees
a road and thus its “advice” should be followed or else no road
is visible and the vehicle controller should ignore spurious
steering commands. The final component of VP FOLLOW is
a suite of methods for detecting failure situations in order to
shut itself off as well as to restart itself when visual conditions
warrant. The first failure situation we examine is whether the
vehicle is currently on a road or not. This is a simple procedure
for a GPS-equipped vehicle on highways and urban streets
which have been digitized in vector form, but the unnamed
access roads and desert paths we are interested in exploiting
are mostly unmapped. VP FOLLOW thus includes an image-
based function to discriminate images that contain a strong
vanishing point–assumed to belong to a road–from those that
do not. Other failure detection functions relate to poor lighting
conditions such as sun glare, distracting shadows, and darkness
that may prevent the module from recognizing a road even if
it is on one.

In the next sections, we will describe the steps of how
VP FOLLOW estimates road shape and introduce its failure
detection methods, after which we will show results demon-
strating the system’s capabilities and discuss extensions we are
currently working on.

II. ROAD SHAPE ESTIMATION

There are three significant stages to road shape estimation
which we describe in the following subsections. First, a texture
analysis is performed by computing dominant texture orienta-
tions over the current image. Second, a linear approximation
to the road direction is measured by having all dominant

orientations in the image vote for a single best road vanishing
point. Finally, the vehicle’s lateral offset from the road center
is estimated from ladar data.

A. Dominant Orientations

The dominant orientation θ(p) of an image at pixel p =
(x, y) is the direction that describes the strongest local parallel
structure or texture flow. We estimate θ(p) by convolving the
image with a bank of Gabor wavelet filters [13] parametrized
by orientation θ, wavelength λ, and odd or even phase. To
generate a k × k Gabor kernel (we use k = b 10λ

π
c), we

calculate:

ĝodd(x, y, θ, λ) = exp[− 1

8σ2
(4a2 + b2)] sin(2πa/λ) (1)

where x = y = 0 is the kernel center, a = x cos θ + y sin θ,
b = −x sin θ+y cos θ, σ = k

9
, and the “sin” changes to “cos”

for ĝeven. The actual convolution kernel g is then obtained by
subtracting ĝ’s DC component (i.e., mean value) from itself
and normalizing the result so that g’s L2 norm is 1.

To best characterize local texture properties including step
and roof edge elements at an image pixel I(x, y), we ex-
amine the complex response of the Gabor filter given by
Icomplex(x, y) = (godd ∗ I)(x, y)2 + (geven ∗ I)(x, y)2 for a
set of n evenly spaced Gabor filter orientations. The dominant
orientation θ(x, y) is chosen as the filter orientation which
elicits the maximum complex response at that location.

For all of the results in this paper except where otherwise
noted, the image has been scaled via an image pyramid down
to 80× 60 resolution, the number of Gabor orientations used
is n = 36, and a single wavelength λ = 4 resulting in a
kernel size of 12× 12 is used. The FFTW Fourier transform
library [14] at single precision is used to calculate dominant
orientations speedily, taking ∼ 55 ms on a 3.0 GHz Pentium
IV for a 160× 120 image.

Figure 1(b) shows the calculated dominant orientations for
the image in Figure 1(a). Gray level intensities proportional
to an estimated angle from 0 to 180 (in 36 discrete steps) are
shown. Observe that most parallel structure is in the dirt road
on the right.

B. Vanishing Point Detection

The possible vanishing points for an image pixel p with
dominant orientation θ(p) are all of the points (x, y) along the
ray defined by rp = (p, θ(p)). Intuitively, the best estimate for



Fig. 2. Steps of ladar “gap” tracker for lateral offset estimation. Ladar-
identified obstacles (red points) are projected along road direction
(diagonal blue line) onto axis defined by front axle (green line)
of vehicle (purple rectangle). The estimated obstacle density in this
projection is graphed in red below, with the particle filter distribution
and likelihoods shown in yellow below that, and the weighted sum of
the particles indicating the gap estimated shown as a blue line segment
at the bottom of the figure. [Source image is shown in Figure 6(c); one
ladar mounted on the bumper parallel to the ground was used here]

the vanishing point vmax is that point lying on or near the most
such dominant orientation rays (see [15], [16], [17], [18] for
recent work on vanishing point finding). In [10], we formulated
an objective function votes(v) to evaluate the support of road
vanishing point candidates v over a search region C roughly
the size of the image itself. An efficient and relatively accurate
(given enough orientations) voting scheme, which we call
raster voting, is to draw a “ray of votes” rp per voter in
an additive accumulation buffer A in which each pixel is a
vanishing point candidate v. After rendering every vote ray,
the pixel in A (which represents C at a fixed resolution) with
the maximum value is vmax . Graphics hardware accelerates
this voting operation, though 8-bit accumulation buffers limit
“elections” to a maximum of 256 votes per candidate, which
is quite enough for our image resolution.

The raw maximum of votes(v) is noisy, and since the
vanishing point shifts only slightly between frames as the
vehicle moves, we smooth the estimate using a particle filter
[19], [5], [6]. Particles are initially distributed uniformly in
order to coarsely localize the vanishing point. Weak dynamics
p(vt |vt−1) (e.g., a low-variance, circular Gaussian) then limit
the search region to track the vanishing point closely, reducing
the chance of misidentification due to a false peak elsewhere
in the image. Finally, the averaging effect of filtering also
mitigates saturation by returning the middle of a region of
saturated votes as the max, which generally correlates with
where the unsaturated maximum would be.

Figure 1(c) shows the vanishing point candidate function
for the image in Figure 1(a). The current particle distribution
and their weighted mean (i.e., the estimated vanishing point
location) are shown in Figure 1(d). The vertical cyan line in
Figure 1(d) indicates the vehicle direction. When the road fol-
lowing camera is perfectly aligned with the vehicle direction,

it is midway across the image. In cases where there is some
yaw offset between the camera and vehicle coordinate systems,
such as with the data in Figure 6, the vehicle direction line
may be off the image center.

C. Ladar-based Lateral Offset Estimation

Given the road direction from the visual vanishing point
tracker, our goal is to find a maximum a posteriori estimate
of the lateral offset of a “gap” in the obstacle field in front
of the vehicle that corresponds to the road. The obstacle field
is defined as the set of ladar hit points (over all registered
ladars) in vehicle coordinates that pass a “danger” test. Here
the danger test simply consists of having an absolute elevation
difference from the bottom of the vehicle’s tires of ≥ 0.5 m.

Figure 2 diagrams the steps of the lateral offset calculation
from an overhead perspective with the vehicle (shown as a
purple rectangle) traveling up the page. At the top of the
figure is the obstacle field graphed as a set of red points
(the source image corresponding to this data is Figure 6(c)).
Obstacle points are projected via parallel projection along the
road direction (the blue diagonal line) onto the line defined by
the front axle of the vehicle (indicated by a green line in the
figure).

We seek the segment–aka the road “gap”–with the lowest
1-D obstacle density along this line that is both wider than the
vehicle width w and in the vehicle’s neighborhood under the
assumption that it is currently on the road. The weight of each
obstacle point falls off exponentially with its distance from the
vehicle so that nearby obstacles count considerably more. The
projected obstacle density is graphed in red in Figure 2 under
the projection axis–note the two humps corresponding to the
berms and vegetation that flank each side of the road.

A particle filter, the “gap tracker,” is used to estimate the
obstacle density online. Each particle (n = 100 here) consists
of a hypothetical 2w-wide gap randomly chosen no further
than w from the vehicle’s current edges. The purpose of lim-
iting gap hypotheses to the immediate vicinity of the vehicle
is to avoid seeing attractively empty areas outside the road but
far away and causing the vehicle to swerve abruptly toward
them. The likelihood of each particle is inversely proportional
to the obstacle density within it. The distribution of gap particle
centers for this data is graphed in yellow beneath the projected
obstacle density, with more likely particles drawn with longer
vertical lines. Finally, the most likely gap estimate derived
from the particle distribution is shown as a blue 2w-wide
segment at the bottom of the figure.

The center of this segment determines where
VP FOLLOW thinks the nominal road centerline (the blue line
in the figure) intersects its projection axis, which is treated
as the front of the vehicle. The road centerline functions
as a linear trajectory for the vehicle controller to follow.
Its constantly changing direction and lateral translation are
what allow the vehicle to go around turns while maintaining
clearance from the road edges.

The road centerline can be further augmented with width
estimates at discrete distances along it. These are obtained by
expanding circles centered at 2 m intervals along the trajectory
until k = 3 obstacle points are enclosed within them. The
maximum circle radius is limited here to 5 m.



III. FAILURE DETECTION

There are a number of visual situations that can cause the
vanishing point estimator described above to fail. These fall
into two general categories: (1) non-road images, and (2) poor
lighting conditions. In the first case, the vehicle may leave
the road–for example, when driven manually, or because the
DGC route description compels it to–and VP FOLLOW must
recognize that it should no longer output a road centerline
to follow (in the larger DGC system, other modules would
continue to offer their opinions of what to do). In the second
case, the vehicle may still be on a road, but because of
darkness, sun glare, or confusing shadows it may not be able
to accurately infer the road vanishing point. Again, we would
like to recognize such eventualities and gate the road follower’s
output.

a) On-off road inference: For most road scenes, espe-
cially rural ones, the vanishing point due to the road is the
only one in the image. In rural scenes, there is very little
other coherent parallel structure besides that due to the road.
The dominant orientations of much off-road texture such as
vegetation, rocks, etc. are randomly and uniformly distributed
with no strong points of convergence. Even in urban scenes
with non-road parallel structure, such texture is predominantly
horizontal and vertical, and hence the associated vanishing
points are located well outside the image.

The “sharpness” of the vanishing point peak in the vote
function over C, which is generally only slightly larger than
the input image, is intuitively an indicator of the reliability of
the estimate. There are a number of ways to measure this, but
we have found that the Kullback-Leibler (KL) divergence [20]
between the vote function and a uniform distribution of the
vote totals (256 possible values for 8-bit accumulation buffers)
correlates well with this intuition. Low KL values are obtained
when many different vote totals are observed in the candidate
region, while high values are measured with bunching of vote
totals at either the high or low end. A similar approach using
the likelihood ratio was used to decide whether a scene had
vanishing points or not in [18].

We decide that an input image is “road-like” when the KL
of votes(v) is over a threshold and the estimated vanishing
point can be considered reliable. To smooth this decision, we
store a history of the last 5 seconds of results of this threshold
comparison and require 1/2 of them to be over threshold for
the estimated road geometry to be passed on to the vehicle
controller.

There is not space in this paper to examine this criterion in
depth, but some results demonstrating its efficacy are shown in
Figure 3. A vehicle was driven on, off, and around a road for
several hundred meters, crossing the road several times. The
output of the KL on-off road test is graphed over the vehicle’s
track with red indicating off-road segments and green on-
road. Note that the test is not strictly about where the vehicle
currently is, but rather what it sees immediately ahead. Thus
the end of the road at the T-intersection is anticipated, and the
road is not re-recognized until the 90-degree turn is completed.

b) Sun glare: Although the situation is less common,
vanishing point estimation can be fooled by spurious edges
caused by saturated pixels blooming on the camera CCD

Fig. 3. On/off road decisions for an arbitrarily-driven segment
(direction of travel is up and to the left). Top figure is 300 m by
150 m; red segments are where images were classified as “off road”;
green are “on road”. Bottom images correspond to first frame of each
off-road segment (marked by blue circles).

(a) (b)

(c) (d)

Fig. 4. (a) Blooming saturation caused by direct viewing of sun; we
recognize such conditions and turn off road following during them; (b)
A few frames later the sun is just out of view. The sky is still saturated,
but the vertical stripe is not there. VP FOLLOW accepts such images;
(c) A problematic image with the vehicle shadow cast into the road
in front of it; (d) Same image as (c) with outline of predicted shadow
location in image overlaid.

from the sun being directly visible in the image. An example
is shown in Figure 4(a). VP FOLLOW uses a straightforward
image processing procedure to recognize such occurrences.
This consists of finding saturated pixels in the current image,
doing a dilation, and then checking for whether any column is
nearly all (more than 0.8 of them) saturated. This instantaneous
test is then temporally filtered. Simply computing the fractional
area of an image that is saturated does not work, as the sky is
often saturated without significantly affecting the contrast of
ground pixels, as in Figure 4(b).



Fig. 5. Robotic vehicle used for testing in this paper. SICK LMS
ladars are mounted on the bumper and roof; road following camera is
one of stereo pair over windshield.

c) Shadows and darkness: There is a rare situation in
which the assumption that the road vanishing point is the
only strong vanishing point in the image is contradicted. It
occurs when the sun is behind the vehicle and low enough
to cast the vehicle’s own shadow far along the road in front
of it (see Figure 4(c)). If the actual road vanishing point is
close enough to the point of the triangular shadow, the two
may be conflated, leading to a road departure. Detecting and
removing shadows in images is still an open topic [21], but
we have found that a calculation of the local sun angle from
the vehicle state (northing, easting, heading, pitch, date, and
time), plus rough knowledge of the vehicle’s 3-D shape and an
assumption of planar ground, suffices for predicting the vehicle
shadow in the image–e.g., Figure 4(d). In practice, we simply
threshold on the azimuthal angle between the predicted tip of
the shadow and the current vanishing estimate. If they are too
close, VP FOLLOW’s output is considered untrustworthy and
it is disregarded. A corollary computation for failure due to
darkness that does not require image processing is the local
sun elevation angle. If it is too low, we assume that it is too
dark for VP FOLLOW to operate.

IV. RESULTS

We will first show results for various components of the
system, then present results for the entire system running
autonomously. For all of results given here, the vehicle used
is a fully-actuated Ford E350 with a modified suspension and
4 wheel drive. Only a single bumper-mounted SICK LMS
ladar was used for lateral offset and road width estimation.
The vehicle is pictured in Figure 5.

A sample of VP FOLLOW running passively while the
vehicle is under manual control is shown in Figure 6. The
leftmost image is a detail of an aerial photograph of the test
area in which the vehicle is driven from right to left through
an S-turn. The five pairs of camera images and ladar obstacle
maps to the right correspond to the vehicle locations marked
with red dots in the aerial image. The green road regions
are based on the estimated road centerline trajectories and
the discrete width estimates, with the lookahead distance of
the road clipped when a width posting is ≤ 2m. Note the

(a)

(b)

Fig. 7. (a) Approximate traces of autonomous trajectory follower
runs with latitude, longitude markings overlaid. Map covers about an
11 km by 6.5 km area. (b) GPS trace of trajectory follower run over
hill (lower right segment from (a)) overlaid on terrain model rendered
from digital elevation model, aerial imagery.

shortening of the road region as the turns are entered in
Figures 6(c) and (e), and its lengthening as the road straightens
in Figure 6(d) and (f). In the camera images, VP FOLLOWcan
be seen to smoothly anticipate both the left and the right turn.

VP FOLLOW has been tested in autonomous mode in a
number of situations. In one experiment, the road centerline
was directly used by the vehicle as a trajectory to follow.
Modulo several pauses to adjust the maximum vehicle speed,
the vehicle was able to follow a long curving road in gently
sloped terrain quite smoothly (the diagonal leg in Figure 7
using only the single camera and a bumper ladar. A second
segment was driven that approached, ascended, and descended
a significant hill (the horizontal segment in Figure 7 and 3-D
rendering) under full autonomous control save manual throttle
control on the descent (the vehicle was not pitch-aware in
setting its speed limits).

In more recent experiments, we have controlled the vehicle
less directly, through painting of “costs” in a 2-D map that
a planning module uses to generate nonlinear trajectories.
The details of this are beyond the scope of this paper, but
suffice it to say that several more autonomous miles have
been logged on different desert roads in this fashion with
VP FOLLOW exercising primary control, and more still with



(a) (b) (c) (d) (e) (f)

Fig. 6. Estimated road shape from manual driving around an S-turn. The leftmost image is a satellite photograph of the testing area with the
vehicle track overlaid. The scale of the obstacle field images is 40 m wide, 50 m high (vehicle is 2 m wide, 5 m long)

it as part of a larger ensemble of “opinion providers.” One
positive aspect of this less-direct method of vehicle control
is that higher-level matters such as DGC course boundaries
can override found roads. For example, a sample course
visiting all three vertices of the triangle of roads in Figure 7
is untraversable in full by the trajectory following method
because it requires a turn at each vertex off of the main road
onto a secondary road, and VP FOLLOW’s tendency is to stay
on whatever road it starts on.

V. CONCLUSION

We have presented a system for road following on desert
and unpaved roads that relies on road texture analyzed from
an on-board camera and ladar-based structural information to
robustly identify and track the road. The on-board component
recovers the road vanishing point in near real-time for many
kinds of surface materials with no tuning, and it analyzes its
own performance and automatically turns off when the vehicle
is not near a road.

A major area of ongoing work is incorporating aerial im-
agery and digitial elevation data into longer-range planning and
anticipation. We have begun promising preliminary work using
skeletonization and watershed image processing techniques to
extract a road network in the vicinity of the vehicle, offering
more choices to the vehicle and possibly graph-based path-
planning.
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