
ROBUST SPATIOTEMPORAL ANALYSIS OF

ARCHITECTURAL IMAGERY

by

Thommen Korah

A dissertation submitted to the Faculty of the University of Delaware in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Computer and Information Sciences

Fall 2007

c© 2007 Thommen Korah
All Rights Reserved

ROBUST SPATIOTEMPORAL ANALYSIS OF

ARCHITECTURAL IMAGERY

by

Thommen Korah

Approved:
David Saunders, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
Tom Apple, Ph.D.
Dean of the College of Arts and Sciences

Approved:
Carolyn A. Thoroughgood, Ph.D.
Vice Provost for Research and Graduate Studies

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Christopher Rasmussen, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Chandra Kambhamettu, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Jingyi Yu, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Xinyang Deng, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Christopher Rasmussen.

His intellect, attitude to research, and clarity of knowledge was a great source of

inspiration. Christopher’s ability to distill the most important issues from complex

problems added a whole new dimension to our brainstorming sessions. While writing

papers and preparing talks, I was driven by the challenge of meeting his exacting

standards. It is with humble gratitude as well as a sense of pride that I look back

on my five years of graduate school as his first PhD student.

I’ve been fortunate to be part of the Vision group at UD. Chandra Kamb-

hamettu introduced me to the subject in my first semester and has always provided

thoughtful advice. Jingyi Yu, who works at the confluence of Graphics and Vision,

has been an inspiration for some of the ideas developed in this work. The company

of Yenchi Lin, Bill Ulrich, and Mani Thomas ensured that the lab was not only

stimulating, but an enjoyable environment as well. I specially acknowledge Mani’s

desperate efforts in assisting me to submit the thesis.

Graduate school has been a fostering ground for several lasting friendships.

Gajju Sasson, my first friend in the US, brought me quickly up to speed with a new

culture and way of life. Some of my fondest memories in Delaware were spent on the

soccer or frisbee fields. To name all the people that shared those moments would

itself comprise a thesis-sized document. I thank Kapil, Sachin, Deepak, Chaitra,

Asmita and Trisha for having colored my last few years with unique individuality.

I will also miss the delicious pies and grilled burgers made by Conan Weiland.

Two people stand out for whose friendship I am especially grateful – my room-

mates Anoop Mathew and Ryan Maladen. Rarely does one get to meet people of

iv

such high moral character, intellect, genuine sincerity, warmth, and zest for life.

In so many indirect but tangible ways, they made this dissertation possible. I will

fondly remember the innumerable trips to the airport, Thursday night wings, dinner

debates, and their creative manipulations of the English language.

This journey would never have begun without the love and prayers of my

family. My parents struggled to make it feasible for me to even dream of graduate

school abroad. Their only moment of doubt in seeing me go through a PhD was

whether they had laid too much emphasis on the importance of education. In their

three children, they have written their own dissertation. I thank my sister Indu for

being such an amazing person to whom I could turn to for support and advice at

any time. And my brother, Thomas, gives me great pride as he starts his career in

investment banking. I thank Appa, Amma, Appachan, Ammachi, Ammamma, Jean,

Tommypappen and Lailamama for all their encouragement and words of advice. My

heartfelt thanks go to Ivy Aunty for her selfless concern and counsel. I owe a great

deal also to my cousins Paul and Tara who made Philadelphia my home away from

home.

I specially mention my grandfather, late Dr. Justice T. K. Thommen, who

sowed in this impressionable youngster the love of learning and research. As a

testament of my gratitude, I dedicate this thesis to him. Watching him pore over

cases late into the night taught me the value of hard work and perseverance; those

lessons have indeed enabled this thesis to come to fruition.

Last but not least, I could not have finished without my wife Mariam. She

provided the inspiration, love, and enthusiasm to keep my engines burning through

this arduous undertaking. Whenever things got overwhelming, I could count on her

to brighten up my day. Most importantly, I thank her for patience during the years

that my research forced us to be apart. She remains my greatest joy and blessing.

v

TABLE OF CONTENTS

LIST OF TABLES . x
ABSTRACT . xi

Chapter

1 INTRODUCTION . 1

1.1 Problem Statement . 4
1.2 Motivation . 6
1.3 System Overview . 10
1.4 Thesis Contributions . 12
1.5 Thesis Outline . 14

2 BACKGROUND . 16

2.1 Urban Modeling and Texture Map Acquisition 17

2.1.1 Modeling from 3D Range Sensors 18
2.1.2 Modeling from 2D Images and Video 20

2.2 Facade Enhancement . 23

2.2.1 Identifying Foreground from Sequences 24
2.2.2 Inpainting for Object Removal 25
2.2.3 Spatio-temporal Synthesis . 27
2.2.4 Modeling Semantics for Building Facades 28

2.3 Aerial Imagery for Robot Navigation 30

2.3.1 Planning . 31

vi

2.3.2 Localization . 32

2.4 Summary . 34

3 ANALYSIS OF AERIAL IMAGERY FOR ROBOT
NAVIGATION . 36

3.1 View Planning . 37

3.1.1 Problem Setting . 39
3.1.2 Goodness Function . 39
3.1.3 Next Best View . 40
3.1.4 Path Building . 42
3.1.5 Experiments . 44

3.2 Probabilistic Contour Extraction for Aerial Road Following 44

3.2.1 Particle Filtering and Vehicle Localization 46
3.2.2 Measurement Likelihood . 48
3.2.3 Integrating Multiple Models 51
3.2.4 Planning . 53
3.2.5 Results . 54

3.3 Summary . 59

4 RECOVERING CLEAN TEXTURE MAPS FROM
SEQUENCES OF PARTIALLY OCCLUDED FACADES 61

4.1 Image Registration and Pollution Detection 63

4.1.1 Motion Stabilization . 63
4.1.2 Identifying Problem Pixels . 68

4.2 Discriminating Building Patches . 70

4.2.1 Motion likelihood . 71
4.2.2 SSD appearance likelihood . 72
4.2.3 Learned appearance likelihood 72

4.3 Timeline Inpainting . 76

vii

4.4 Experimental Results . 80

4.4.1 Texture Map Recovery . 80
4.4.2 Classification . 85
4.4.3 Timings . 86

4.5 Summary . 87

5 DISCOVERING NEAR-REGULAR TEXTURES ON
BUILDING FACADES . 88

5.1 Near-Regular Textures and Discovery 90

5.1.1 Texture Discovery: Related Work 92

5.2 Spectral Analysis for Brick Patterns 94
5.3 Grouping Lattice Structures . 95

5.3.1 Image Tokenizing . 96
5.3.2 MRF Grid Extraction . 99

5.4 Discovering pure NRTs . 108
5.5 Results . 109

5.5.1 Building Images . 111
5.5.2 NRT Database Images . 112

5.6 Summary . 121

6 EXTRACTING SEMANTIC DESCRIPTIONS OF BUILDING
IMAGES . 133

6.1 Lattice Completion . 134
6.2 Split Grammars for Parsing Window Interiors 136
6.3 Facade Segmentation . 140
6.4 Foreground Removal . 142
6.5 Summary . 147

7 CONCLUSION . 149

7.1 Key Observations . 149

viii

7.2 Contributions . 150
7.3 Limitations and Future Extensions 154

7.3.1 Robot Navigation . 154
7.3.2 Timeline Inpainting . 155
7.3.3 Lattice Discovery . 157
7.3.4 Building Semantics . 158

7.4 Future Directions . 159

BIBLIOGRAPHY . 163

ix

LIST OF TABLES

4.1 Timeline inpainting Stage 1 execution times (in seconds) using
different appearance models . 87

x

ABSTRACT

This thesis addresses the issue of understanding and manipulating images of

architectural scenes. Automatically modeling the structure and appearance of build-

ings with a robot is challenging; an end-to-end system would have to tackle a whole

spectrum of tasks such as planning, sensor fusion, navigation, image acquisition and

matching, structure estimation and texture mapping. Purely bottom-up techniques

are inadequate for this task due to ambiguities and missing information inherent in

sensor data. My solution is to introduce additional domain-specific models that can

capture dependencies such as restricted spatial configurations or geometric patterns

in images of buildings. Techniques to encode, discover and exploit these relation-

ships for retrieving semantic information about buildings are illustrated. These

interaction models are shown to be powerful for such varied tasks as object recog-

nition and detection, segmentation, inference of missing information, and realistic

image synthesis – even without supervised training or other appearance models.

A primary focus of this work is on constructing “clean” texture map mosaics

of building facades. Without explicit handling, foreground objects such as trees,

signs, and people will appear pasted as artifacts on the model. As a first major

contribution, given an image sequence captured around the building, I developed

a novel spatiotemporal timeline-based inpainting technique to remove non-building

pixels from the median mosaic. These polluted regions are a result of the ma-

jority of views being occluded, which makes conventional techniques such as the

median filter unreliable. Outlier pixels are then automatically identified by a robust

measure of spread. A combination of motion cues and an automatically trained

xi

appearance-based classifier are used to fill the majority occluded holes with true

building background. A second stage of spatial inpainting is applied to the rel-

atively small unanimously occluded regions in which the background was never

imaged. Results are shown on a variety of campus buildings.

My second major innovation is a series of methods that enable foreground re-

moval from single images of buildings or brick walls without any motion information.

The key insight is to use a priori knowledge about grid patterns on building facades

that can be modeled as Near Regular Textures (NRT). I describe a Markov Random

Field (MRF) model for such textures and introduce a Markov Chain Monte Carlo

(MCMC) optimization procedure for discovering grid structures on building images.

Results are shown on both synthetic NRT as well as building images. This simple

spatial rule is then used as a starting point for inference of missing windows, facade

segmentation, grammar-based image parsing, outlier identification, and foreground

removal.

I also describe related work on how aerial imagery may be exploited for

navigating a robot around the building perimeter. A randomized approach to view

planning is presented that generates paths to simultaneously address visual coverage

and quality. A Monte Carlo Localization framework for vehicle localization and

guidance is also described.

xii

Chapter 1

INTRODUCTION

The problem addressed in this thesis is that of understanding and manipu-

lating images of architectural scenes captured by an autonomous robot navigating

in an urban environment. Realistic ground views of buildings such as those shown

in Figure 1.1 may be severely unconstrained unlike aerial views, making it a chal-

lenging task. We are primarily motivated by the ability of humans to learn a useful

model of a class from a small number of examples, often just a single example. Hu-

mans do not have to see thousands of examples to recognize a building and identify

its windows, doors, roof and so on. Along with appearance characteristics, we also

reason about its functional and spatial context. Whereas a rectangular opening on

the facade 10 meters above the ground is most probably a window, an identical

opening on the facade with the base reaching the ground is probably a door or a

French window.

A grand goal for robotic systems is that of building an agent that can sense

its environment, navigate autonomously around it, and interact intelligently with

the physical entities in that environment. This interaction encompasses a wide

spectrum of tasks such as space exploration (Mars Rover), driving vehicles (DARPA

Grand Challenge), cleaning floors or pools (iRobot Roomba), and aerial surveillance

(Predator UAV). A fundamental task towards attaining this goal is that of fusing

information from various sensors to model and infer the complex nature of the real-

world. While it comes so naturally to humans, this task can be frustratingly difficult

to teach a computer to perform.

1

Figure 1.1: Ground views of buildings may undergo large variability in appearance,
as well as being subject to occlusions and clutter.

With advances in computing and camera technology, computer vision tech-

niques have been successfully deployed in various robotics systems. Tracking, stereo,

visual odometry, structure-from-motion, and image-based localization and mapping

have all reached a level of maturity sufficient to facilitate autonomous navigation

over hundreds of miles as in the DARPA Grand Challenge [33]. Most of these al-

gorithms work by detecting local discriminative features and match them across

multiple images to infer their temporal or spatial ordering. Features used are often

small patches from the image and might have very little “meaning” in the robots

domain.

The basic observation behind this thesis is that as robots move out of con-

strained environments into more unpredictable and cluttered settings, visual sensing

must take on the added dimension of semantic scene interpretation i.e., reason about

the semantic characteristics of the scene as opposed to patch-based processing. A

robot only sees a grid of color pixels from a camera with no higher level grouping.

What if the robot could instead like humans see and recognize windows, doors, trees,

and other semantic entities? How can we equip the robot with this ability and what

2

is the best way to act upon this new information?

The past few years have indeed witnessed substantial developments in object

recognition or classification [13, 37, 43] and localization [25]. The majority of these

algorithms involve identifying candidate patches from a large training set of labeled

images to learn independent appearance and spatial models for these parts. This

strategy helps to mitigate the effects of occlusion, pose variations, and illumination

changes. A classifier would then combine evidence from a new image, possibly

using co-occurrence of features as an additional cue, to determine the presence

or absence of an object. Without discounting its efficacy for object recognition,

this approach fails to capture certain semantic attributes and relationships that are

domain specific. For example, windows on a building facade appear similar and are

often part of a larger grid, which allow humans to hypothesize both appearance and

location of occluded windows. Examples of individual windows or even groups of

them will not be able to capture this.

It will be an aim of this dissertation to show that semantics alone can be

powerful enough for recognition and subsequent inference. By restricting the robot

to work in urban environments, we develop algorithms that exploit established ar-

chitectural constraints to impose priors on what is being seen i.e., parse the image.

These priors are specified as topological rules that describe the spatial arrangement

of building entities (such as, grid of elements, divisions within a window, and so on).

Without a manually labeled training set, any learning has to be bootstrapped with

examples extracted automatically using these rules. We contend that the versatile

object recognition techniques from the literature, when annotated with the seman-

tics of the domain, may assist robots to resolve ambiguities and make inferences –

much as humans do.

3

Figure 1.2: Some textured models from the UrbanScape Video Modeling project
at UNC (top row), F. van den Heuvel’s project (bottom-left) at the
Delft University of Technology [164] and the 3D City Modeling project
at Berkeley (bottom-right) [49]. Foreground objects either cause holes
in the model or appear pasted on the texture map.

1.1 Problem Statement

The work presented in this thesis contributes towards an end-to-end system

whereby a GPS-enabled robot will autonomously navigate around a university cam-

pus, capture a set of optimal views around the perimeter of the buildings, and build

a photo-realistic 3D model of the campus. The key technical challenges in modeling

are view planning and data acquisition, building a 3D model using data from sen-

sors, the geometric alignment of 2D images onto the 3D model, and finally rendering

the model given constraints on overlaps, occlusions, etc. This thesis addresses the

problem of creating high-fidelity texture maps to render onto the model. A common

problem during texture mapping is the presence of foreground objects such as trees,

people, and signs causing holes in the model or being pasted on it. Our accom-

plishments include how to avoid or minimize these artifacts for a restricted class of

4

scenes. This generally involves the twin challenges of (i) identifying problem areas

and (ii) replacing them with the background building pixels.

The images in Fig. 1.2 are reproduced from results of various projects for

fully automatic and real-time 3D reconstruction of urban scenes. For a review of

these systems, the reader is referred to the next chapter. While very impressive in

computing structure, the texture maps overlaid on these models appear corrupted –

even tending to diminish the quality of geometry estimation. The holes in the texture

map caused by foreground elements like trees and poles stand out. Constraints on

parallelism, continuity, and symmetry do not seem to be enforced; facade elements

like windows and stairs exhibit jagged edges. Finally, several trees without trunks

seem to be hanging in mid-air. This illustrates how the general quality of texture

maps have been overlooked in modeling algorithms.

Architectural modeling has been useful for urban planning, historical preser-

vation, military strategy, homeland security, computer gaming, and virtual tourism.

Numerous researchers have worked on different aspects of robot-based modeling of

buildings; almost all of them focus on recreating the geometry of the scene by estab-

lishing correspondences between multiple views. These methods rely on redundancy

of data and, although theoretically sound, can be very brittle in the presence of noise

and occlusions. Another cause for failure might be the inability to navigate around

obstacles or difficult terrain to capture an image from a required viewpoint.

To mitigate effects of clutter and unobserved data while modeling, i.e., make

it more robust, we propose that the processing agent should use prior knowledge of

building semantics to make hypotheses and inferences about the model. Although

architectural styles can vary greatly and be complex, they are generally constructed

according to a set of stylistic and practical constraints [36]. An algorithm that has

been taught to recognize these constraints can then reason about the scene like

humans do. Thus, a high-level AI module that arbitrates between all the lower level

5

systems, such as navigation and model building, is a key ingredient for robots to

handle the rigors of the real world.

1.2 Motivation

How can semantically enhanced sensing assist a robot to function more effec-

tively in its domain? In particular, considering our scenario of automatic foreground

removal from architectural imagery, what would annotated interpretations from the

robots visual sensors contribute towards its goal of recreating a virtual scene? In

addition to appearance, we wish to exploit spatial context about the domain. Im-

ages of buildings and urban environments are dominated by straight lines – often

in mutually orthogonal directions. Building walls are typically planar with minor

depth variations on the facade. Windows and doors exhibit characteristic shapes

depending on the architecture style (such as Victorian or Gothic). Here we illus-

trate various scenarios in which a robot could exploit these constraints to “think and

process information like humans”, producing models rich in geometric and visual

detail.

Given our goals of understanding and manipulating architectural imagery, we

categorize our approaches as follows: (i) Discriminative approaches to bottom-up

understanding, (ii) Image manipulation and synthesis, and (iii) High-level top-down

reasoning.

Bottom-up Understanding Consider the two image patches in 1.3. One of the

issues addressed in this thesis is that of automatically learning appearance models

to identify foreground and background patches. Spatial and temporal cues from

an image sequence are used to generate training examples of characteristic patches.

We effectively combine bottom-up techniques such as frame-differencing, feature

extraction, image matching, and Gaussian color models for layer discrimination.

6

Figure 1.3: How do we automatically learn to discriminate between building and
foreground patches?

Although not demonstrated in this work, supervised learning and object de-

tection may also come in handy while modeling. For example, columns in front of

the building can produce artifacts in motion-based approaches that register images

under the planar assumption. A recognition module that could alert the registra-

tion process about this might trigger an alternate algorithm to handle these specific

cases. Any of the numerous techniques [43, 44] that learn appearance models of

building entities from labeled training examples could be used for this task.

Image Manipulation and Synthesis A test of how well an algorithm has “un-

derstood” the image is to manipulate the image pixels while still adhering to its ge-

ometric and appearance context. All processing and synthesis techniques employed

in this thesis are strung together by the goal of automatic foreground removal. We

remove the artifacts typical of modeling algorithms (Fig. 1.2) by masking out the

foreground layer and filling it with the background. A popular approach to hole-

filling in images is known as inpainting which propagates pixels from the filled-in

regions to the missing portions of the image. We build upon inpainting techniques

and better constrain the problem using additional cues such as temporal or high-level

semantic information. We show that this is necessary for inpainting architectural

7

scenes that exhibit a lot of structure in the form of strong lines and regular pat-

terns. Other forms of synthesis we use include reconstruction or inference of missing

features, photometric alignment, etc.

Top-down Reasoning for Building Facades Consider the image of a building

facade in Fig. 1.4. Given enough views captured from side to side, one can use

parallax information to separate out the foreground tree and recover the background.

However, even from a single image, humans are adept at “mentally scrubbing” away

the tree and envisioning the appearance of the obliterated regions. What kind of

priors do we use to make these inferences? Firstly, we note that windows on a facade

resemble each other and often appear as part of a larger grid. As we group these

like elements together, disruptions in the pattern suggest some form of foreground

occluder behind which windows are likely to be present. The blotches of white

amidst the green leaves provide further evidence. Thus the grid prior allows us to

hypothesize both the appearance and location of occluded windows on the facade.

Other semantic attributes such as brick texture, facade boundaries etc. can also

be extracted. Algorithms similarly equipped with prior knowledge of architectural

styles and patterns can improve robustness and efficiency. This thesis describes

techniques to encode, discover, and exploit these relationships for extracting high-

level semantic information about the imaged facade.

One recent form of encoding architectural constructs in computer graphics

has been to procedurally model elements [173, 114] by a set of grammar rules spec-

ified by the user. Starting from a basic shape, the grammar is used to derive a 3D

layout of a building consisting of simple shapes with attributes. While there are

many formal representations of space and design in architecture, the most popu-

lar approach adopted in the graphics community has been that of split grammars.

Certain basic shapes with attributes undergo a series of decompositions with each

8

Figure 1.4: How do we reason about occluded windows from this image? Prior
knowledge that windows often appear as grids allows us to extrapolate.
The blotches of white behind the tree provide further evidence.

split rule. High quality 3D worlds consisting of buildings have been created from a

very manageable number of shapes and rules [114]. While going from a grammar to

3D models or images have shown promising results, the reverse process, i.e. going

from an image to the set of grammar rules that derived it, has not received as much

attention [6, 115].

In compiler parlance, parsing is the process of analyzing an input to determine

its grammatical structure with respect to a given formal grammar [4]. It usually

transforms a series of tokens into a data structure that captures the hierarchy of the

input. Parsing an image of a building would thus amount to concisely describing

the facade by a set of pre-defined rules and estimating its attributes. For example,

a building parser ought to be able to describe the window shown in Fig. 1.5 as a

square, split horizontally and vertically with some thickness. It should also recognize

9

Figure 1.5: What is building and what is reflected within the window?

the reflections within the building as being generated by an outlier process.

1.3 System Overview

Figure 1.6 gives an overview of the various components and its relationships

within the system. The GPS-enabled robot, equipped with an aerial map of the

campus layout, takes user-input about the building to model. In outdoor environ-

ments, wireless communication via a hand-held PDA could facilitate this interaction

between the user and the robot. The Planning Module first plans a set of views that

need to be captured from around the building to minimize redundancy and maxi-

mize coverage. The aerial image and a vector map of the campus layout can allow

the robot to reason about visibility and foreground objects. The view positions are

then passed to a path planning algorithm to generate dense way-points for the robot

to follow.

10

Figure 1.6: Various components of the robot-based modeling system.

Both of the planning systems have an in situ component that could be called

during operation. While navigating, an Assessment Module must constantly monitor

the on-board views on the robot, not only to judge the safety of the terrain in its

vicinity (On-board Module) but also evaluate the quality of the acquired images

and adapt accordingly. For example, unforeseen occlusions, out-of-focus images, or

other optical constraints should trigger appropriate adjustments to the initial plan.

During navigation, it is vital for the robot to localize itself on a global map. The

Aerial Module keeps track of changes in the robot’s position by analyzing satellite

imagery and GPS readings. These three components (gray boxes) guide the robot

through its controller.

Once all the images are acquired, they are passed to the vision modules for

3D model building. A first step is to establish correspondences between the tens or

11

hundreds of views to restrict processing on a few related pictures at any given time.

Pose annotated images should assist in this task. After a preliminary segmentation

to separate out non-building pixels, sets of images are processed to recover geometry

and illumination details for the 3D digital model.

All urban modeling systems are comprised of the above modules to some

degree or other. A key novelty of our proposed system is the Semantic Module

that is designed to oversee all other robot and vision tasks. This module contains

prior knowledge about the nature of architectural environments. When factors such

as noise, missing data (either due to insufficient views or occlusions), and other

ambiguities cause the “closed-form” solutions to break, the restricted nature of the

robots domain should allow plausible interpretations of the data. Closing the loop

with semantic feedback is crucial for recovering from deadlocks and other impasses.

The first issue to resolve is how this knowledge is represented in the semantic

database. One obvious choice would be to train the semantic module from exemplar

images of buildings and other elements and represent it in some multidimensional

space conducive to efficient classification, detection, and recognition. While this

approach has been shown to effectively learn appearance models, other topological

and functional constraints can be hard, if not impossible, to learn from examples.

For spatial configurations, we achieve this by using grammars to specify rules of

symmetry, structural coherence, and so on. From this description, a robot must

then be able to associate what it sees with semantic keywords from the database.

1.4 Thesis Contributions

The previous section describes the end-to-end robot-based modeling problem,

comprising of sub-tasks from planning and autonomous navigation to modeling.

This dissertation will focus on some of those aspects that have received less attention

in previous work. Specifically, we make the following contributions:

12

• We describe how a “birds eye-view” provided by satellite imagery can be used

to assist in view planning and robot navigation. This includes methods to lo-

calize the robot on its path given erroneous GPS readings as well as guiding the

on-board module in anticipating the nature of the path ahead of the vehicle.

This work was developed in the context of the DARPA Grand Challenge.

• We introduce a novel spatio-temporal inpainting technique that recovers a

clean texture map of partially occluded building facades from video or im-

ages. Images from a sequence are stabilized and stacked together to form a

timeline of potential pixels that constrain what gets included in the texture

map. To overcome inefficiencies of the exhaustive search procedure in classi-

cal inpainting, we train a classifier from automatically generated examples to

disambiguate between foreground and background.

• Drawing the analogy that building facades are often examples of Near-Regular

Textures (NRT) [66], we derive a Markov Chain Monte Carlo (MCMC) ap-

proach to discover such patterns from images. A Markov Random Field (MRF)

model for NRTs and lattice structures is defined; entities in the image are

grouped together based on its adherence to this model.

• The texture discovery is applied to single images (under perspective or rec-

tified) of building facades to identify windows that appear in a grid pattern.

Parameterizing this pattern provides a “window” towards semantically un-

derstanding the rest of the facade. For example, the location of occluded

windows can be predicted or the boundaries of the facade can be segmented

out by robustly learning appearance models of the brick texture between the

windows.

• To develop the theme of image parsing, we show that the inside of windows

can be adequately described by split grammars [173]. The MCMC framework

13

is extended to take the detected windows as input and infer the grammar

rules that best explain the subdivisions within the window. These semantic

descriptions can then be used for outlier removal and image synthesis.

• We develop a virtual scrubbing technique that uses the discovered texture

to automatically detect and seamlessly remove unwanted foreground elements

from single images taken in urban settings–e.g., trees or people in front of

buildings. Without motion, the key assumption is that the background is

strongly structured, which allows automatic detection of occluders as outlier

pixels in near-regular textures and their replacement via a robust subspace

reconstruction process driven by tile appearance statistics.

1.5 Thesis Outline

In Chapter 2, we give an overview of previous literature on various aspects of

urban modeling that are covered in this thesis. These cover a whole gamut of tech-

niques from computer vision, machine learning, computer graphics, and robotics.

We describe some of the successful urban modeling projects, specially noting their

attention to the quality of texture maps along with 3D structure. The literature re-

view also includes work that has actively tried to incorporate architectural semantics

into modeling. Chapter 3 details how aerial imagery can be utilized as an a priori

map to assist the robot in view or path planning as well as vehicle localization. This

overhead data can be used in preprocessing to generate a global path, or during nav-

igation to adapt to unpredictable situations. Subsequent chapters primarily focus

on the computer vision and image processing algorithms to generate texture maps

of the building facade. Chapter 4 introduces a spatio-temporal inpainting algorithm

that takes a sequence of images captured around a building and automatically pro-

duces a “clean” mosaic of the facade with foreground objects like trees, people, etc.

14

removed. Both motion and appearance constraints are used to detect foreground

and inpaint them with the building background.

Chapter 5 begins to address the issue of how one might remove foreground

occluders from a single image without any motion or parallax constraints. The

underlying assumption used is that building facades are examples of near-regular

textures [66] where each window is a texture element. An MCMC algorithm for

lattice discovery is presented and results are shown on both synthetic as well as

building images. Chapter 6 uses the discovered window grid to infer various semantic

properties such as facade extent, occluded windows, and so on. Results are shown of

images that have been scrubbed clean of foreground objects or graffiti and replaced

with a low-dimensional representation of the facade texture. Finally, we conclude

with a summary of contributions and discussion of limitations and future work.

15

Chapter 2

BACKGROUND

Modeling of urban and architectural environments has been studied for sev-

eral years. Government agencies have traditionally used it for development planning

and to study effects of climate, pollution, public safety, and military strategy [69].

Early planners and architects used materials like plastic, foam, wood or paper to cre-

ate models from elaborate manual measurements. Over the last couple of decades,

Computer Aided Design (CAD) tools have allowed them to quickly create realis-

tic digital models for editing, planning, and visualization. The success of recent

products like Google Earth, SketchUp, and Microsoft Virtual Earth has enabled

urban modeling to be done in a distributed, voluntary, and “wikified” manner. New

consumer applications like street maps and automatic GIS tagging of photos are

sprouting up, making this an exciting area of research.

Several techniques from photogrammetry, computer vision, and computer

graphics have contributed towards automatically creating and visualizing digital

models of cities. Some of the relevant methods are Camera Calibration, Structure

from Motion, Shape from Silhouette Contours, Stereo Correspondence, Range Scan-

ning, and Image-Based Rendering. These work well with single or a small collection

of objects, but often don’t scale too well when applied to large-scale urban model-

ing. Additional constraints about urban scenes are usually incorporated to overcome

some of the numerical instabilities. Existing approaches generally involve 3 steps:

(i) Build a 3D model using data from the sensor; (ii) Align 2D images onto the 3D

model; (iii) Texture the model using the aligned image.

16

As mentioned in the previous chapter, this thesis describes components of

an urban modeling system. The literature review is split into 3 parts based on

the contributions and techniques investigated in this thesis: (i) urban modeling

systems and texture map acquisition, (ii) facade enhancement based on low-level,

mid-level and high-level semantic cues, and finally (iii) robot localization, planning,

and navigation using aerial imagery. We specifically describe projects that have

attempted to bring in domain semantics about architectural elements. Are these

constraints justified? How successful were they? Some of the systems here have the

sensors placed on a mobile platform such as a vehicle or cart, which is then driven

around by a human. Though not classified as robot-based acquisition, they do have

to handle the localization problem. We do not claim that the algorithms we develop

in this thesis compete with urban modeling systems reviewed here. Rather, our

techniques are designed to be complementary in nature, fusing domain semantics to

improve the reconstructed models.

The rest of this chapter proposes to set the background for the thesis. Where

appropriate, related papers and techniques are reviewed in the relevant chapters.

2.1 Urban Modeling and Texture Map Acquisition

Urban modeling makes the fundamental assumption that man-made struc-

tures are likely to appear as smooth surfaces and solid objects rather than dis-

connected points or lines. Consequently, it is usually represented as “layers” [36],

which is a parameterized 3D surface with a boundary, and possibly a texture and

depth map as well. Calibration, stereo, and SfM algorithms [64] are used to ex-

tract the geometrical structure of these surfaces, while problems such as reflectance

modeling, segmentation, object detection/recognition, and grouping primarily focus

on the mapping between pixel intensities and the surface. These two paradigms of

model-based and view-based representations [112] are coupled together to effectively

describe a 3D scene.

17

A texture can either be a detailed pattern that is repeated many times to

tile the plane, or more generally, a multidimensional image that is mapped to a

multidimensional space. Texture mapping in graphics is a shading technique for

image synthesis in which a texture image is mapped onto a surface in a 3d scene,

while avoiding aliasing and other artifacts [67]. It also allows additional details

such as surface perturbations, transparency and specularity to be added, with only

modest increase in rendering time. In this work, we are primarily concerned with

recovering a “clean” mosaic of the facade that can subsequently be used as a texture

map for each planar face of the building facade.

2.1.1 Modeling from 3D Range Sensors

Active range sensors directly measure the depth of objects by emitting a laser

pulse and precisely measuring the time of flight to return to the source. Airborne

laser scanning in conjunction with GPS and IMU sensors have been used in city

modeling for over 4 decades [182, 17, 41, 113, 180, 60, 118, 177]. Satellite imagery

facilitates texture mapping of these models for interactive fly-throughs. LiDAR

(Light Detection and Ranging) data is in the form of a point cloud which needs

to be filtered for noise and registered with imagery. Automatic techniques differ

mainly in their segmentation that groups data points into coherent structures. For

airborne systems, 2D footprints available from imagery, GIS, or CAD models can

assist in this task.

From the ground, registration generally involves matching straight lines in the

image to those in the 3D model. However, these can be ambiguous as edges don’t

necessarily correspond in the two modalities. The advantage of a ground-based

system is in its ability to capture highly-fidelity close-up views that can facilitate

walk-throughs [50, 49]. Other vehicle systems that capture 3D data and texture

data at ground level can be seen in [7, 150, 69, 181, 102]. One drawback of laser

scanners is that they can be cumbersome and expensive. In comparison, cameras

18

decrease size, weight and cost while increasing flexibility — all crucial design issues

in robotics.

The AVENUE (Autonomous Vehicle for Exploration and Navigation in Ur-

ban Environments) [7, 8] project at Columbia targets complete automation of the

urban site modeling problem – from navigation on a mobile platform to geometri-

cally and photometrically accurate models. In terms of scope and goals, their project

is most similar to ours. However, they make use of an expensive 3D range sensor

(Cyrax laser scanner returning 1K by 1K range samples with a spatial resolution

of a few centimeters) to recover dense and regular geometry of the scene. Stamos

in his PhD thesis [146], develops algorithms to create 3D solid models of buildings

from the point cloud and automatically register range and image data-sets. Match-

ing between range scans requires manual intervention while range-image registration

assumes that a sufficient number of common features in the 3D and 2D data can be

extracted. Nevertheless, this registration overcomes limitations of fixing the relative

positions of the two sensors [50, 181, 128, 139]. Images can be acquired from any

vantage point.

In extensions to this work, Liu et al. [102, 103] attempts to exploit all pos-

sible relationships between 3D range scans and 2D images by performing 3D-to-3D

range registration, 2D-to-3D image-to-range registration, and structure from mo-

tion. Two independent pipelines estimate a dense and sparse 3D point cloud from

the range data and images (using classical SfM) respectively. A subset of images

are then automatically registered to the 3D point cloud, upon which the alignment

for the complete set of images can be determined to integrate all data into a sin-

gle coordinate system. While intuitive and general, no attempt is made to handle

missing data in either the images or the range data.

Frueh and Zakhor [50, 49] present an automated method for fast, ground-

based acquisition of large-scale 3D city models. Experimental setup consists of

19

a truck equipped with one camera and two fast, inexpensive 2D laser scanners,

mounted horizontally and vertically. Monte Carlo Localization utilizing either an

aerial image or a Digital Surface Map (DSM) is implemented to determine the

global pose of the vehicle. They specifically cite the difficulties of producing detailed

textured facades; registering range data to camera images, reflections caused by

glass on windows, and holes due to foreground elements are all problematic. After

subdividing the data into smaller chunks, points are classified into a foreground and

background layer. Missing data in the background layer are filled in by interpolation.

Holes in the image texture are also filled by interpolation in homogeneous regions,

or by a copy-paste method otherwise. These heuristics are not well-defined, and

zoomed in views reveal the shortcomings of this crude hole-filling.

2.1.2 Modeling from 2D Images and Video

One of the first urban modeling projects was the Facade system [32, 31] devel-

oped by Paul Debevec, which could render highly realistic and visually compelling

models. A user works in an interactive environment with a sparse collection of

images, manually specifying a model structure and registering its boundaries with

actual edges in the image. The model is composed of volumetric primitives (instan-

tiated by the user) such as rectangular and triangular prisms that can be described

by only a few parameters. Full reconstruction is carried out in a post-processing

step to recover the structure and camera parameters by minimizing the re-projection

error between model and image edges. To make the rendering more realistic, they

use the recovered camera pose to project different images onto the model depending

on the user’s viewpoint. This view-dependent texture mapping interpolates between

nearby camera positions to render a virtual image that better captures the perspec-

tive and shading effects from that viewpoint. Finally, a depth map that models

deviations from planarity of each face in the structure is computed using a dense

stereo matching algorithm.

20

The ImageModeler software from Realviz [132] provides a similar interactive

system and is very popular in the film industry. Despite this, manually guided

reconstruction is not feasible for large urban environments with tens or hundreds of

buildings. Domain knowledge allows these systems to model architecture using a few

primitive blocks; these assumptions could have also been used to handle occluding

elements or fine-grained facade geometry. The texture mapping does not prevent

foreground objects such as cars and trees from being pasted on the model. Depth

maps with constraints that reflect the regularity of building facades might avoid

such spurious estimates of geometry.

The City Scanning project at MIT [157, 156] uses several thousand pose

annotated spherical mosaics to produce a textured CAD model of an urban envi-

ronment. A coarse model of structure is extracted by edge histogramming across

multiple images to identify and localize prominent vertical facades. Their method

of texture map recovery and relief estimation is detailed in [153]. Facade extraction

consists of first normalizing all projected images to have the same mean luminance.

An Environment Mask (EM) that accounts for global occlusion, an Obliqueness

Mask (OM) that reflects the perspective distortions, and a Correlation Mask (CM)

to identify foreground such as trees are then estimated. These are combined in a

weighted averaging scheme to produce a “consensus image” as the facade overlay.

To model some of the finer relief details, heuristics on geometric and periodicity

constraints are used.

Although they were among the first to tackle foreground removal from texture

maps, some of the heuristics used are vague and the resulting texture maps often

appear “washed out”. The luminance levels of images captured over several hours

exhibits too much variability, and an independent per-pixel averaging scheme still

results in inconsistencies across the mosaic. The buildings they model are fairly

simple box-like structures, and it is not clear how effective their structure and texture

21

recovery would be on more complicated data sets.

A great deal of work has been done by the Visual Geometry Group at Oxford

towards fully automatic construction of graphical models of scenes – both from single

images [28] as well as a short image sequence [46]. They approach the problem using

classical Multiple View Geometry techniques [64] of matching 2D point features in

pairs or triples of images to achieve a projective reconstruction. This can then be

upgraded to a Euclidean one by means of auto-calibration techniques [127]. For

architectural models, a RANSAC estimator then fits planar faces, along with some

modeled perturbation, on the recovered set of sparse 3D points and lines. When

there is a lack of sufficient texture, these models can appear crude and oversimplified.

Dick [35, 36] introduced the concept of using architectural semantics through

high-level recognition of building entities to improve the models. Similar to the

interactive systems, a building is described as a set of walls and parameterized

primitives such as doors or windows. Prior distributions are defined on the values

of these parameters based on architectural norms. A Markov Chain Monte Carlo

framework is then used to generate semantically labeled building models and evalu-

ate its likelihood with the image data. The novelty of their method was in combining

the classic problems of structure estimation and object recognition to reinforce each

other. A drawback is that the models are highly tuned to the respective scene.

Somewhere in the middle of this spectrum of automatic methods ranging from spe-

cialized architectural models to fitting piecewise planar patches over multiple views

[155] is the method of Werner and Zisserman [169, 168]. A coarse planar model of

the planes and its delineations in the scene are first computed followed by fitting

refined polyhedral models on windows and other indentations. Once again, semantic

information is confined to improving the structure with less emphasis on the texture

mapping.

The recent UrbanScape project [5, 52] headed by researchers at University

22

of North Carolina-Chapel Hill and University of Kentucky attempts to develop a

fully automated system for accurate and real-time 3D reconstruction of urban en-

vironments from video streams. Data acquisition is through multiple synchronized

video cameras on a vehicle driven in an urban environment, along with GPS and

INS sensors to georegister each frame. An extended plane-sweeping stereo algorithm

computes an initial depth map on the GPU for each frame. Adjacent depth maps

are then fused together while enforcing visibility constraints to produce a more accu-

rate and economical representation of the scene. The final step outputs a triangular

mesh modeling planar regions and an image to be used as a texture map. While

impressive in terms of scale, efficiency and quality of structure, the texture maps

appear “wrinkled” as illustrated in 1.2.

Cornelis et al. [23, 22] describe a system to extract simplified and textured

3D models of cities from video sequences captured by a stereo camera. They present

a practical implementation of cognitive feedback loops in a city modeling framework,

tightly integrating 3D reconstruction and object recognition. The recovered ground

plane and camera parameters guide a recognition module searching for cars in the

image. The detection results, on the other hand, are used to remove the cars from

further processing to avoid artifacts in the texture mapped facade structures. Place-

holder models of virtual cars are inserted into the model for heightened realism. This

is a very interesting technique that propounds some of the ideas developed in this

thesis.

2.2 Facade Enhancement

The complicating factor that motivates this aspect of the thesis is the possible

presence of other, unknown objects in the scene between the camera and building

plane—e.g., trees, people, signs, poles, and other clutter of urban environments.

Without explicitly recognizing and removing them, these foreground objects may

be erroneously included in the building appearance model. Hence, a “clean” facade

23

mosaic is one without such non-building features; conversely, we call a mosaic with

foreground artifacts “polluted.” There are two major problems to be addressed

here. First, which areas of the scene are problematic, if any? Second, how to

actually remove foreground objects to reveal the building structure behind them?

With the exception of the City Scanning Project [156] at MIT and the 3D

City Model Generation work at Berkeley [50], none of the systems reviewed in sec-

tion 2.1 try to address issues of missing data, occlusions, perspective or other factors

that degrade the visual quality of the texture maps. Even these two systems employ

very crude methods of blending and interpolation with no guarantees about correct-

ness. Debevec’s view-dependent texture mapping [31] gets around this issue without

explicitly handling the occluders. In this section, we review various techniques that

might be used to automatically “touch-up” the acquired imagery. Some of these

fall under the bracket of image editing and enhancement while other algorithms

that assume a priori knowledge of the architectural domain can be classified under

Image-Based Modeling. The latter class typically incorporates semantic constraints

of a building to reduce its degrees of freedom while manipulating image content.

2.2.1 Identifying Foreground from Sequences

Given a sequence of images scanning the building, the most obvious cue to

identify problem areas is parallax due to the different depths of the facade and

the unknown foreground objects as the camera translates. Under the assumption

that the building plane accounts for the majority of pixels in the sequence, with

robust methods we can estimate the dominant motion of the building and stabi-

lize it against the camera motion. This makes foreground objects virtual moving

objects in an otherwise motionless scene, suggesting existing techniques like fore-

ground subtraction [42, 119, 135] or layer extraction [166, 76, 174, 170]. However,

many of these approaches either assume that the moving objects are relatively small

or quickly moving, facilitating temporal median filtering [166, 119, 170, 42], or that

24

the objects to be removed are manually identified once in order to segment them

later [81, 135]. Since the nature of potential foreground elements between the sensor

and the building is unknown a priori and may cover large regions, such assumptions

are disqualifying.

Several promising papers on foreground/background layer segmentation [26,

148] were recently published. Motion, color and contrast cues are probabilistically

fused together with spatial and temporal priors to classify each pixel into one of two

layers. However, both take a temporal estimation approach to full-motion video (and

assume a fixed camera, though after camera stabilization our problem is similar to

theirs), whereas we present a technique that also works with sparser data—i.e.,

images taken several seconds apart.

2.2.2 Inpainting for Object Removal

The second problem is what to put in the building texture map in the “gaps”

left where foreground objects are masked out. In order to gauge possible approaches,

it is useful to distinguish between situations in which the pollution of a particular

mosaic region is due to a foreground object being present in a minority, majority, or

unanimity of views over the sequence. We call the set of views of a particular point

or patch in the mosaic its timeline (this is defined more precisely later). Timelines

in which the foreground object pollutes a minority of views are amenable to cleaning

via simple outlier removal through median filtering as mentioned above. In the other

two cases, some kind of inpainting would seem to be required.

There is a very large literature on inpainting for image restoration or ob-

ject removal using techniques such as PDEs and wavelets [14, 21], exemplar-based

matching [40, 27], and space-time or video completion [74, 87]. These methods of-

fer a principled way to remove large foreground elements using spatial contextual

information from the rest of a single image or temporal context from preceding

and succeeding images in a sequence. PDE-based methods are effective for thin

25

structures and text overlays, but can generate blurring artifacts on larger missing

regions. Patch-based exemplar techniques [27, 74, 38, 88] that augment synthesis

with a prioritized fill ordering have been more successful than the pixel-based syn-

thesis of [40, 99, 10]. All the above approaches proceed to fill in missing pixels in a

greedy manner. Recently Sun et al. [149] and Komodakis [84] proposed inpainting

as a global optimization problem that can be solved using belief propagation. Some

form of interactive guidance [38, 149, 124] has also been accepted in the inpainting

community.

Here we review the inpainting algorithm due to Criminisi, Pérez, and Toyama

[27]— henceforth referred to as CPT inpainting. In addition to serving as a good

example technique for the class of non-parametric exemplar inpainting algorithms,

we use it as a baseline method and build upon their framework to clean up occluded

building facades. This will be detailed in subsequent chapters.

Figure 2.1: Source region Φ, target region Ω, target boundary dΩ, target patch
Ψp̂ (from Criminisi et al. [27])

As diagrammed in Figure 2.1, an empty target region Ω’s pixels are filled

from its border dΩ inward by copying square image patches from a source region

Φ to target patches Ψp centered on p = (x, y) ∈ dΩ. Given the next target patch

Ψp̂, an exemplar patch Ψq̂ is selected from Φ and pixels are copied to the unfilled

portion of the target patch Ψp̂ ∩Ω from the corresponding part of Ψq̂. Ψq̂ is chosen

26

as the source patch with the minimum distance d (e.g., SSD) between it and the

already-filled part of the target patch Ψp̂∩(I−Ω). As inpainting proceeds Ω shrinks

while Φ remains constant, leaving a band of filled pixels Ω0 − Ωt at step t. Note

that Φ can be smaller than I − Ω0.

A priority function P (p) = C(p)D(p) sets the order in which patches along

dΩ are filled. C(p) is a confidence term that measures the amount of reliable

information around p with the formula
∑

q∈Ψp∩(I−Ω)
C(q)
|Ψp| . Initially, C(p) = 0 ∀p ∈

Ω0 and C(p) = 1 ∀p ∈ I −Ω0. When pixels in Ψp̂ ∩Ω are filled in, their confidence

values are updated from 0 to C(p̂), having the effect of preferring sections of dΩ that

were filled earlier vs. later. D(p) is a data term proportional to the dot product

of the tangent vector to dΩ at p and the gradient vector ∇p with the maximum

magnitude in Ψp ∩ (I − Ω). This encourages the extension of linear structures

(commonly found on man-made objects) by boosting the priorities of patches with

a strong edge “flowing into” them—as, for example, in Figure 2.1.

2.2.3 Spatio-temporal Synthesis

Pure spatial inpainting is necessary in the unanimously-occluded case where

the background is not in the timeline: only context from the rest of the image can

guide the filling process. However, an image sequence facilitates temporal search

as well to identify which view, if any, is of the background. Combining spatial and

temporal search has been done in video inpainting and space-time texture synthesis

[83, 82, 89, 171, 3]. The key technical issue, especially with video sequences, then be-

comes making this search as efficient as possible without sacrificing accuracy. While

these methods try to remove objects from each frame of a sequence, generating tex-

ture maps requires that the background in each frame be (automatically) identified

and pieced together into a panorama.

Two papers that also attempt to fill in occluded areas in image sequences

through a modified version of CPT inpainting can be found in [176] and [121]. With

27

regard to [176], they manually identify foreground pixels in all frames. This can be

nontrivial in outdoor scenes for objects such as tree limbs and leaves. Furthermore,

their running times are quite large (not even including the manual interactions re-

quired), taking from hours to days due to the 4-D search problem their lightfield

technique engenders. The work in [121] assumes a fixed camera and uses motion

alone to detect foreground objects. While their focus is on synthesizing moving but

compact foreground elements, we are concerned with recovering large and discon-

nected portions of the occluded background.

2.2.4 Modeling Semantics for Building Facades

Given just a single static image, how can we separate the foreground and

background layers to reveal more of the facade? Without parallax, we need another

cue to differentiate between the two layers. A common simplification encountered in

urban modeling research is that the background is strongly structured enough that

it exhibits characteristics of a regular or near-regular texture [91] and dominates the

image. This is frequently the case for close-up images of sections of buildings with

brick patterns or window grids. The basic idea is that by discovering these textures

automatically and collecting statistics on tile appearance, foreground objects can

be automatically segmented as texture outliers allowing either the reconstruction or

replacement of the tiles with unoccluded patterns elsewhere in the texture.

Most urban modeling research such as Facade [32] and UrbanScape [126]

approach the problem from a purely geometric view. Our approach is motivated

mainly by the work of [35] which tried to infer the semantic properties of buildings

to assist in modeling. Mayer and Reznik [110] describe a similar framework that

makes use of some prior learned appearance models of entities such as windows and

so on. However, the non-hierarchical labeling in these algorithms makes high-level

analysis and manipulation difficult. In the graphics community, split grammars were

introduced by Wonka et al. [173] to formally describe the derivation of architectural

28

shapes for procedural modeling. Each production of the grammar corresponds to

the decomposition of a basic shape into another shape with derived attributes. This

was later used to great effect in [114] for synthesizing realistic 3D models of buildings

in various architectural styles and eras.

The dual Computer Vision problem of going from an image to the grammar

that derived it is hard, unless some simplifying assumptions are made. A probabilis-

tic sampling approach to infer the attributes (such as split ratios, color, etc.) given

a user-specified grammar was detailed in Alegre and Dellaert [6]. They assume that

the whole building facade can be represented as a tree of partitions with leaf nodes

corresponding to building structures. While the general framework shows promise,

it requires the user to come up with a custom grammar for each new building. More-

over, enforcing the grammar rules to the entire facade limits the applicability of the

technique to extremely regular structures. Inconsistencies and occlusion cause the

algorithm to break.

A few researchers have tried to combine the grammar-based procedural mod-

eling with the concept of parsing images of buildings [12, 17]. Recently, Mueller et

al. [115] presented an impressive system that takes a single rectified image of a build-

ing as input and computes a 3D geometric and semantic model with much greater

visual quality and resolution. Mutual Information is used to detect repetitions on

the facade structure and subdivide it into tiles. Each tile is matched with a library

of 3D architectural elements to identify the region type upon which a 3D model and

shape grammar rules can be generated. The model can also be edited by the user.

Most of the above methods use very specialized models and show examples

on a restricted set of images. They require that the facades contain repetitive ele-

ments exhibiting high regularity. The case of detecting occluding elements or seeing

through them is seldom handled, primarily because of stringent assumptions on

the nature of symmetric patterns. A more general grouping algorithm to detect

29

near-regular grid structures on building facades could increase robustness. Several

papers have examined the problem of finding regular, planar patterns, with notable

approaches based on RANSAC [137] and the cascaded Hough transform [162]. An al-

gorithm for near-regular texture (NRT) [91] discovery by lattice growth was recently

described by Hays et al. in [66]. Enhanced with architecture-specific assumptions,

this class of algorithms could increase the flexibility for facade interpretation.

2.3 Aerial Imagery for Robot Navigation

Autonomous navigation in unstructured and unknown environments is a

daunting task due to the difficulty in analyzing sensor data from on-board units,

such as stereo or laser rangefinders. Recent developments make it possible and eco-

nomical to acquire high-resolution aerial data of an area prior to robot traversal.

Although the resolution of conventional Digital Elevation Maps (DEMs) is too lim-

ited to be used effectively for local robot navigation, low-resolution imagery (around

1 meter) is publicly available for most areas and higher resolution data – comparable

to that of on-board sensors – can be obtained commercially.

In this work, we investigate the use of aerial images as prior maps for au-

tonomous robot navigation. Overhead data is used to enhance system performance

in two areas. First, a polyhedral model of a building’s structure is used to compute

an optimal path around the building that achieves complete visual coverage. This

is called View Planning. Second, satellite imagery is processed to localize a robot

on the road/path given noisy GPS estimates. Localization is especially important

in urban environments where GPS readings are error-prone due to triangulation

errors. The same processing of the overhead data can be shown to alleviate some of

the difficulties associated with myopic navigation using on-board sensors alone. For

example, dangerous turns or sharp corners not visible in the robot sensors may be

anticipated in advance from the aerial view.

30

2.3.1 Planning

Most robot navigation research aims to achieve the twin goals of safety and

efficiency when traversing from one location to another. With only on-board sen-

sors, the vehicle can achieve safe navigation by maneuvering itself around obstacles.

However, path efficiency will suffer due to localized planning. Only if prior knowl-

edge about the environment is provided can the system achieve both safety and

efficiency. For navigation, aerial data is a natural candidate to complement the

local perception systems on the robot with a “birds eye-view”.

The DARPA Grand Challenge brought the challenge of long distance navi-

gation to the forefront. Possible solutions are determined by various factors such as

waypoint spacing, extent of prior knowledge about environment, and other mission

constraints [160]. According to Silver et al. [141], there are three possible categories

for vehicle operation:

• Path Tracking: a fixed path through the environment is pre-computed or

manually specified for the robot to traverse. Slight deviations may be allowed

if on-board sensors detect obstacles [134].

• Full Exploration: no prior knowledge of the environment is given to the robot.

Purely on-board sensing must be used to navigate from waypoint to waypoint

[142, 70].

• Aided Exploration: rather than a single, pre-planned path, the vehicle uses a

combination of prior data and its own perception system to navigate.

The boundaries are not clearly defined and are usually determined by the nature of

prior information and density of waypoints.

Global planning usually involves finding a path that best achieves certain

priorities like shortest traversable path, lowest risk path, or other constraints on

energy utilization. A common approach based on the prior data available, is to

31

generate a cost map for the environment. This is represented by a 2D grid where

the value of each cell encodes the risk involved in traversing through that cell.

The lowest cost path can then be computed. In the full path planning scenario,

global planning occurs only once before the robot mission. In exploration, the path

is continually replanned based on the perception history of the robot. In aided

exploration, a combination of prior data and perception history is used. The cost

maps are usually generated by annotating semantics with the environment map.

2.3.2 Localization

A primary task involved in equipping intelligent vehicles with autonomous

capabilities is that of robot localization, which is the problem of estimating a robot’s

position relative to a map of its environment. Localization includes both the ability

to home in on the position without any prior information of initial state, as well as

keeping track of the position as the robot moves. The need for a highly accurate

localization process is crucial for tasks such as map-building, path-planning and

autonomous navigation [1, 34, 47].

Sensors like Global Positioning Systems (GPS) and odometry [15] have been

widely used for this purpose. In practice however, GPS accuracy is heavily depen-

dent on several factors such as the satellite configuration and multi-path errors.

Line-of-sight (LOS) issues make GPS less effective in urban canyons and densely

forested regions. GPS errors can routinely range from 2- to 15 meters depending on

the sophistication of the unit [15].

To correct such noise in the GPS position, several map-matching approaches

[116, 151] have been employed. These techniques use a digital road network and

a combination of geometric and topological constraints to “snap” onto the correct

road. Digital road-maps can be problematic in dense urban environments as there

may be several candidate roads close to a particular location. Localization in off-road

and desert terrain is particularly challenging as these maps may not be available.

32

Vision has recently been investigated as an effective tool to correct for such

erroneous sensor data. Much research has been done in robot localization [47, 53,

138] to complement GPS or sonar readings with another on-board sensor such as

a camera or laser range finder. This usually entails searching for artificial/natural

landmarks in the vicinity of the GPS-estimated position for increased accuracy.

Information from on-board sensors are compared to a world model to determine the

absolute pose of the robot. The models might be built by hand [53] or simultaneously

estimated as in SLAM (Simultaneous Localization and Mapping) [94]. These state

estimation problems are effectively solved by probabilistic approaches like Bayesian

inference, which recursively estimates the posterior probability density over the state

space, conditioned on the data collected so far. Implementations of the Bayes filter

differ in the manner by which this density is represented. Kalman filters [77] are the

most widely used variant due to their efficiency, but have restrictive assumptions

such as unimodal Gaussian uncertainty and linear system dynamics.

A powerful means of representing the belief state is particle filtering [158],

also known as the CONDENSATION [72] algorithm and Monte Carlo Localization

(MCL) [34]. Particle filters fall under the general class of Monte Carlo methods

which are based on representing a probability distribution function by a set of ran-

dom weighted samples. The ‘particles’ represent the distribution of the state vector

in state space, and are iteratively updated after an observation. The observation

model describes the likelihood of an observation given the current state. Advantages

of particle filters include the ability to represent arbitrary probability densities, and

applicability to converge in non-Gaussian, non-linear dynamic systems.

In the context of urban modeling that spans multiple city blocks, sensor

data tagged with global position estimates are key to minimizing the combinatorics

of the problem. Localization via GPS alone [181] is failure-prone for the reasons

mentioned above, and methods that can reliably handle GPS-outages are necessary.

33

Frueh and Zakhor [50] describe a method that eliminates GPS altogether. Relative

position changes are computed to high accuracy by matching successive horizon-

tal laser scans, but small errors can cause considerable drift over long distances.

Therefore, they integrate this into a Monte Carlo Localization (MCL) framework,

combining additional evidence from high resolution aerial images or DSMs to en-

sure that the vehicle travels on roads, without cutting through corners or buildings.

Georgiev and Atanas [53], as part of the AVENUE project, describe their localiza-

tion system that uses GPS and odometry in open spaces, but resorts to vision-based

localization when the robot is close to other tall structures that obstruct a clear

view to the satellites. Visual pose estimation consists of matching linear structures

in an image of a building taken by the on-board camera with a model. The model is

a manually constructed small-scale database of various facades and planar regions

in the environment. When the environment is complicated, these models can be

hard to construct, not to mention defeating the purpose of automatic modeling in

the first place.

2.4 Summary

We have reviewed different urban modeling systems that integrate techniques

from photogrammetry, computer vision and computer graphics to create digital

models of urban environments and buildings. The algorithms chosen are dictated by

the type of sensors, automatic- or manually-guided acquisition, mounted platform,

human or mobile agent, and intended audience. We note that while much attention

has been given to recovering the geometry of the scene, the issue of producing high-

fidelity texture maps has often been sidelined. Inpainting is one possible approach to

cleaning up mosaics of building facades, and we reviewed the hole-filling literature in

static images as well as video sequences. Since these systems work at the mid-level

of using context from the neighborhood of a pixel, gross errors can result due to

violations of the building structure. We reviewed papers that have tried to extract

34

higher-level semantic knowledge from images of buildings. Our goal is to “marry”

inpainting with semantics for automatic foreground detection and removal in urban

scenes – even from a single image.

Since our system is robot-based, the mobile-platform must first determine

an optimal path around the building and keep track of its position as it navigates

through the environment along this path. The challenges of planning and localiza-

tion for navigation are described, followed by a review of Bayesian filtering tech-

niques that have been popular in robotics. Finally, we briefly discussed localization

techniques used by two successful urban modeling projects.

35

Chapter 3

ANALYSIS OF AERIAL IMAGERY FOR ROBOT

NAVIGATION

This chapter investigates the use of aerial images for enhancing the perfor-

mance of a robot in both planning and localization. Firstly, polyhedral maps of

a university campus with building outlines are used to compute a visibility map

around the structure. Locations for image acquisition are then planned around the

building to ensure maximum visual coverage for mosaicing. Secondly, we develop

an algorithm to trace traversable paths in the robots vicinity. Aerial images at 1

meter resolution were used for both urban and desert environments. There are two

scenarios under which our technique may be useful. If GPS estimates are unreliable

but the robot is known to stay on the path, our road tracer can effectively localize

the robot on the aerial map. Conversely, if GPS estimates are reliable while the

robot is prone to small excursions away from the intended path, our algorithm can

use the aerial image to guide the vehicle back onto the road.

The work presented here acts as a bridge between the larger framework of ur-

ban modeling and the more specific image processing on building facades described

in subsequent chapters. Both planning and localization are central to the task of

moving the robot around from one waypoint to another for image acquisition. To

achieve the goals of safety and efficiency in navigation, we advocate Aided Explo-

ration where the vehicle uses a combination of on-board perception modules as well

as prior data in the form of aerial maps or images. Not only do aerial images provide

36

evidence of safe and unsafe regions, but certain aerial landmarks such as vegetation

or roads also visible from the ground view could be used for absolute positioning of

the robot; this could prevent various hazardous situations when GPS estimates are

unreliable or unavailable.

We first describe a randomized approach to view planning for a single ground

robot scanning a building perimeter to recover a series of texture map mosaics.

This algorithm generates paths that simultaneously address coverage and quality

(i.e., real-valued distance and foreshortening factors) – very important to produce

high fidelity texture maps. This is part of the global path planning which is run

prior to the robot embarking on its mission. We then address the mid-level problem

of tracing the road from satellite imagery for curve and corner anticipation, or

to localize the robot under erroneous GPS estimates. This was developed in the

context of the DARPA Grand Challenge, and many of the experiments reflect this

bias. However, the underlying principles of planning and localization using aerial

images apply equally well to navigating around buildings. We do not describe the

details of our on-board road following algorithm in this thesis. Interested readers

are referred to [129, 130].

3.1 View Planning

Our algorithm for facade texture map acquisition (see Chapter 4) operates

on a discrete set of overlapping views. Planning a robot path around the outside of

a building that maximizes visual coverage (an aerial photo of an example building

and its polygonal outline is shown in Fig. 3.1) is related to the “art gallery” problem

from computational geometry [120]. Specifically, the task is to find a set of “guard”

positions G in a polygon P that collectively “see” the entire polygon. The traditional

criterion for visibility between two points p and q is line of sight : the line segment

joining them does not intersect P . Paths along which the entire polygon is seen at

least once are called watchman routes.

37

(a) (b)

Figure 3.1: (a) Aerial view of example building to be mosaiced and its surround-
ings; (b) Outline of building and neighbor, plus additional map fea-
tures (free space here is of course the outside of the building polygons)

Robotics researchers interested in view planning with real sensors such as

laser range-finders have recently extended the notion of visibility in an art gallery

framework to include a range constraint and an incidence constraint [29, 55]. The

range constraint models a sensor’s inability to work when too far from or too close

to an object. Points p on P whose distance from the sensor position q falls inside

a specific range dmin ≤ d(p,q) ≤ dmax are “range visible”. Similarly, the incidence

constraint enforces an angular range to model a limited sensor field of view (or

exclusion of poor quality range returns at near-grazing angles). Letting v = q− p

and n be the surface normal at p, points for which the angle 6 (n,v) ≤ τ 6 are

considered “incidence visible.” Only polygon points which are visible in all three of

the above senses are considered visible from a position q.

Binary line-of-sight and field of view constraints obviously apply to camera

view planning, but even within a single image different pixels “see” more or less of the

38

building and with different levels of goodness. Horizontal and vertical foreshortening

and finite camera resolution influence the overall goodness of a hypothetical view,

and we believe that a real-valued visibility function—i.e., how well, not just whether,

a particular point is seen—can better represent this. One contribution of our work

is a formulation for such a goodness function, which we demonstrate in an existing

point sampling framework. Moreover, overlap between adjacent frames is important

for mosaicing. To this end, we introduce an online method derived from particle

filtering for finding and linking together guard points that allows dynamics and

may be suitable for situations in which a priori building maps are not available

(i.e., exploration). Finally, we offer some heuristics for improving the roadmap

approach to extracting a path from the set of guard points described in [29] that

are particular to our task.

3.1.1 Problem Setting

Suppose we wish to mosaic or cover the exterior of a building B with camera

views. B has a known perimeter and facade height hB, and is one of a set of

neighboring buildings B = {B1, . . . , Bn}. Let the robot be equipped with a panning

camera that has a vertical field of view of φ, a horizontal field of view of θ, and an

image resolution of w×h. We assume that the camera is mounted near ground level

with its optical axis fixed parallel to the ground plane (i.e., it does not tilt). Image

pixels discretize viewing directions, so for a cylindrical projection B’s visibility is

sampled by w equally-spaced viewing rays.

3.1.2 Goodness Function

We replace the binary visibility criterion above with a real-valued “goodness”

function. Consider a candidate viewing position q in the plane. A particular viewing

ray is defined by q and a unit direction vector r. The goodness of the ray Γ(q, r)

is defined as the product of the {0, 1}-valued line-of-sight, range, and incidence

39

constraints (τ 6 = θ/2) defined above and two real-valued terms (only calculated if

the first three are all non-zero). These are:

• Foreshortening If the normal at the wall point p on B which the ray strikes

is n, the dot product −r · n is 1 when the ray hits the building orthogonally

and 0 at the extreme grazing angle of 90 degrees. This measures the effective

resolution of the pixel.

• Vertical Framing An additional measure of pixel utilization is how well

the building fills the image vertically. We penalize for being too far away,

resulting in sky visible above the building, as well as being too close, cutting

off the top of the building. If p is on the ground, another point p′ that is

hp′ = d(p,q) tan φ meters above the ground would be in the top row of the

image. Thus, min(hp′ , hB)/ max(hp′ , hB) measures the vertical fraction of the

image that is either sky or cut-off building.

The goodness of a viewing position Γ(q) is evaluated by casting one ray per

sensor pixel and taking their average goodness. In this work we ignore vertical fore-

shortening by only casting rays in the plane—i.e., horizontally. A sample synthetic

omnidirectional image (only 270 degrees are shown) is given in Fig. 3.2(a). It rep-

resents the information available to the planner regarding visibility, foreshortening,

and vertical framing via the intensity of each image pixel. Fig. 3.2(b) shows a build-

ing surrounded by sampled viewing positions (more on this in the next subsection)

and a particular position at which Γ is being calculated. The intensities of the rays

are proportional to their individual goodnesses. A high-resolution depiction of the

components of the goodness objective function is shown in Fig. 3.2(c-e).

3.1.3 Next Best View

Using the binary visibility criteria of distance and angle defined above, the

first algorithm in [55] based on the Greedy algorithm for finding near-optimal set

40

(a)

(b) (c) (d) (e)

Figure 3.2: (a) Sample synthetic omnidirectional image (partial) of building with
diffuse shading showing foreshortening (red lines are 90 degree in-
tervals); (b) Building polygon, uniform samples, and viewing position
with cast rays (ray saturation proportional to goodness); (c) Goodness
function with foreshortening term only discretized at 1 m resolution;
(d) Goodness function with vertical framing term only; (e) Combined
(via product) goodness function

covers could be directly used to obtain a set of guards G1, G2, . . . that covers the

building polygon B with views. Briefly, one would randomly and uniformly sample

viewing positions outside any building polygon and within dmax of B, compute

what sections of B’s perimeter are visible from each sample, and pick the guard

position that sees the longest overall section of B (summed over visible fragments).

These “already seen” sections are marked as invisible to subsequent viewing position

candidates, and the process is repeated until all of B (up to some threshold) has

been seen once.

The real-valued goodness function above necessitates modifications to this

approach since each section of wall is not just “viewed” or “not viewed”, but rather

41

“viewed with a certain goodness.” Therefore, we set a threshold on the total good-

ness with which every segment of wall must be viewed. The bookkeeping for such a

requirement makes the exact ray-sweeping methods used in Greedy inapplicable.

Therefore, we discretize the perimeter of the building into initially empty buckets

and every new guard chosen deposits its ray goodnesses into the buckets until their

thresholds are exceeded, after which subsequent rays hitting such areas have good-

ness 0. This mechanism ensures as before that new guard positions are chosen rather

than the same one repeatedly, and updating this data structure is extremely simple

and fast. We call this variant GoodnessGreedy .

3.1.4 Path Building

The set of guards obtained with the GoodnessGreedy method above is un-

ordered and not immediately usable as a path for robot motion. We have developed

two approaches to making this step.

Uniform Sampling

Previous work [29] demonstrated how post-processing could generate an or-

dering of the guard points using an approximate approach to the traveling salesman

problem. A graph R called a “roadmap” is created which contains all guard points

and building vertices, with edges joining mutually visible nodes. The shortest path

between every pair of guards in R is then computed to yield a fully connected graph

R∗. A traversal of R∗’s minimum spanning tree R∗
MST yields an “inspection tour”

with length less than or equal to twice that of the shortest possible tour.

We have implemented a variant of this approach using several heuristics in

the traversal of R∗
MST to shorten the extracted path. Rather than [29]’s method of

simply performing a pre-order traversal, we initially choose a path start point that

maximizes tree height, and then at each node with multiple children we visit the

children in order from shortest to tallest subtree height. These heuristics tend to

42

(a) (b)

Figure 3.3: Sample planned coverage paths (subdivided). (a) Using global, Good-
nessGreedy method for guard point selection followed by a distinct
guard point linking phase; (b) Using local, particle filter-like algorithm
to incrementally add guard points from a random start point

work well for circumnavigating a building with concavities because exploring such

indentations are just small detours off of the mainline circuit around the building.

Typically, we smooth the final path to eliminate sharp corners for better suitability

to robot motor control using an interpolating spline such as Catmull-Rom [68].

Particle Filter

An alternative, online approach to building a robot inspection path is derived

from the idea of reactive path planning via a “tracking quality” function in [145].

Here the idea is to define a “map quality” function on robot positions that is just

the real-valued goodness function above.

Given an initial robot position in the area near a building, we sample positions

in its neighborhood with a Gaussian in a manner similar to a particle filter [71]. The

43

local sample with the best positional goodness is chosen as the next guard, and the

area around it is sampled. Through segments of the building bucket data structure

filling up, the path planner is “forced” to move in order to find novel views. This

effectively builds a path online for the robot through randomized gradient ascent that

constitutes coverage behavior without explicitly building and searching a roadmap

graph. Because the sampling is local, of course, the planner can become temporarily

stuck in local minima until it random-walks to a new view. In practice we have found

that this approach works quite well even on buildings or sets of buildings with many

concavities.

3.1.5 Experiments

We have performed extensive experiments on large, concave building poly-

gons, both individually and in sets, and observed excellent performance for both

the particle filter variant described above and the modified version of the uniform

sampling algorithm from [55]. We show some generated paths for a building using

each method in Fig. 3.3. 360 rays (1 per degree) were cast per sample position, the

goodness bucket width along the building outline was 2 m (the building perimeter

is about 325 m), and the vertical FOV φ was 30 degrees. For uniform sampling,

one sample was generated per 5× 5 m square (dmin = 1 m, dmax = 50 m), while for

the particle filter-like approach 300 particles were used, generated from a normal

distribution with variance 150.

3.2 Probabilistic Contour Extraction for Aerial Road Following

We described the planning module that computes a set of camera view lo-

cations and generates a path passing through all of them. This section describes

methods to localize a vehicle traveling along this road/path, given noisy GPS way-

points, and an aerial photograph of the surrounding region. The objective is to

post-process a noisy GPS track under the assumption that the vehicle was traveling

44

on roads the whole way (such as a manually guided robot). The same road tracing

algorithm can also be used for vehicle guidance by searching for nearby roads or

anticipating sharp turns not visible from on-board sensors. We frame localization

and guidance as a Bayesian inference problem to integrate and arbitrate between

ground-based and aerial data.

Our road extraction method is most similar to JetStream [123], a particle

filtering approach to spatially track edge contours including roads. Tracking gen-

erally refers to following the state of a target over time, but for still aerial images

“time” is associated only with the progressive extension of the estimated contour as

in [123, 178]. In our case, GPS information should bias the tracking and eliminate

the high level of user interaction required by JetStream. Monte Carlo methods have

been used to localize robots in constrained environments [158], combining measure-

ments from multiple sensors such as GPS, dead reckoning systems, and cameras

[54]. Frueh and Zakhor [48] have used particle filters to register laser scan data

with Digital Surface Maps, to build 3D textured models of cities. We propose to

localize the vehicle using only 2D aerial photographs, which provide higher spatial

resolution and important color information.

All the above methods employ only a single cue to measure the strength of

their belief. Common cues employed in tracking such as color, edges, or feature

templates generally do not work well alone in a wide range of environments. A good

measurement likelihood function must be able to determine the most appropriate

model at any given time and adaptively switch to the dominant one. Isard and

Blake [73] have described a mixed-state CONDENSATION tracker that can handle

multiple motion models. While we have a well-defined motion model, we adapt

their technique to handle variable modes of perception. Once again, we note that

the likelihood function here was designed for vehicles traveling on roads in desert

or urban environments. In the case of campus modeling, a more suitable function

45

might need to be designed, while the overall framework can remain unchanged.

After describing how particle filters are used to localize a vehicle on an aerial

map of the region, we detail different measurement likelihood functions used in

the prediction and update phases. A multi-modal particle filter that detects and

switches to the most dominant road model while tracking is also presented. We then

describe scenarios where the road tracing algorithm may play the role of a wingman

to warn an autonomous robot of road curvature or steer a stranded robot towards

the nearest road. Finally, results are shown on varied environments.

3.2.1 Particle Filtering and Vehicle Localization

Particle filtering has proven to be adept at tracking in the presence of compli-

cated likelihood functions and non-linear dynamics. Tracking here refers to following

the state of a set of variables x as they evolve over time. We wish to estimate xt at

time-step t, given knowledge about all the sensor measurements Zt = {z1, z2, .., zt}

up to t. If we construct the posterior density p(xt|Zt) to represent our belief of the

current state, we can infer xt by taking either the MAP (maximum a posteriori) or

mean estimate.

In particle filters, this belief or posterior density is approximated by a set

St of N particles st
i = {< xt

i, w
t
i > |i = 1, .., N}, where xi is a state (position on

the map) and wi is the importance weight. The importance weights give a measure

of how reliable the corresponding state estimate is. The set of samples thus define

a discrete approximation of the continuous probability density function. In every

iteration, N new particles are sampled from St with the probability of survival of

a particle st
i being proportional to its weight wt

i . Each particle is then modified

according to the dynamics and the weight is updated according to the measurement

model.

Initially, a set of equally weighted particles are uniformly distributed around

the starting position estimated by the GPS reading (u1, v1) in UTM coordinates.

46

The state vector x = [x, y, θ,m] includes a variable for the road width m, where (x, y)

is the mid-point of the road oriented at an angle of θ degrees. At every iteration of

the particle filter algorithm, a new set of GPS coordinates (ut, vt) is obtained and

the relative motion (Rt, Θt) is computed. We now describe two schemes to integrate

GPS sensor information into the particle dynamics.

GPS-driven dynamics

The motion (Rt, Θt) is applied to all the particles along with white Gaussian

random noise to predict the new position of each particle. The particles are thus

subjected to a drift and diffusion process with a relative movement of (R
′
t, Θ

′
t) =

(Rt + N(σr), Θt + N(σΘ)). On applying the motion model, we predict state xt
i =

[x′, y′, θ′, m′] from xt−1
i = [x, y, θ,m] by applying the dynamics:

xt
i =

x′

y′

θ′

m′

=

x + R
′
t sin(Θ

′
t)

y + R
′
t cos(Θ

′
t)

Θ
′
t

m + N(σm)

(3.1)

where N(σ) denotes Gaussian noise with variance σ2. The standard devia-

tions are a function of the step size with σΘ varying from 0.05
√

R to 0.1
√

R and σr is

set to 0.2R. When the GPS estimates are fairly reliable, this scheme forces particles

to follow the GPS point and look for a possible road within the error ellipsoid.

Texture-driven dynamics

If the GPS positions are not reliable, the above method overly restricts the

particles from following the road. Setting a larger variance with the previous method

does not eliminate the problem, as a majority of particles would still follow the

incorrect GPS track. This is especially true in cluttered urban regions since there

might possibly be many road-like features such as house tops or shadows of buildings.

47

A more flexible approach in such situations is based on the strength of the underlying

texture - i.e. allow particles to follow all possible roads and then use GPS to narrow

down on the most plausible one in the update phase. Details of the likelihood

function are elucidated in the next section.

The formula for xt
i is the same as (3.1) except that the orientation Θ

′
t =

(Θ
′
t−1 + N(σΘ)) is distributed around the direction the particle was traveling in

the previous time step. This allows a much wider angular distribution as well as

giving particles a certain momentum to get past erroneous GPS measurements. The

formula for R
′
t remains the same as before, in order to retain information about the

velocity of the vehicle.

Update phase

A preliminary weight wi is computed for each new particle based on the

measurement model. This weight could be a measure of our confidence that the

estimated position of the particle on the aerial photo lies on the road or how well

on-board camera images correlate with the aerial view of the corresponding region.

The weighting serves to concentrate the histogram over state space of all the parti-

cles around the most likely position that the vehicle could be in. Only the “fittest”

particles survive from one iteration to the next, resulting in an evolutionary pro-

cess. Given this representation of the density function, the current estimate for the

position of the vehicle is chosen to be the weighted mean of all the particles.

3.2.2 Measurement Likelihood

We employ vision-based techniques to assign relative weights for each particle.

These weights reflect the strength of our belief that a particle lies on the road

based on the aerial photo. Most particle filters, including JetStream, are flexible

and have very few restrictions on the measurement model used. However, a single

measurement model alone might not be sufficient to characterize the observation

48

density. Multiple observation models are important for robustness and applicability,

with automatic switching between them. We first define the different road models

used and in the next section describe a technique to arbitrate between them.

Measurement Models

Figure 3.4: Example aerial images of urban and desert regions from which we
wish to spatially track the road traveled by the vehicle. Roads might
appear bright or dark and may have very little contrast in off-road
environments.

Figure 3.4 shows example aerial images of off-road and urban environments

on which we run our technique. JetStream [123] uses the norm of the luminance

gradient as a cue to track high contrast contours. The aerial images that we employ

are low contrast, noisy and characterized by excessive clutter in urban regions,

making simple edge- or color-based methods impractical. We have therefore chosen

49

Gabor filters [93, 154], widely used in texture analysis, to give an initial confidence

estimate for each pixel being road or non-road. The general functional for the two-

dimensional Gabor filter family can be represented as a Gaussian function modulated

by an oriented complex sinusoidal signal. In polar form it is written as

Gn(x, y, λ) = e−π[x2/a2+y2/b2]ej2π[r cos(θ−φ)/λ]. (3.2)

The real part of the Gabor filter (RGn) has even symmetry and is a proven

blob detector while the imaginary part (IGn) can be used to detect step edges. Since

roads appear as banded segments oriented at some angle, we attenuate RGn along

its width, to give an elliptical pattern that retains only the central 40 percent of

the estimated width. While this particular pattern effectively detects bright roads

in a darker region, a negated filter (RG−
n) can detect darker roads. The width of

the roads in the image dictate the choice of various scales(λ), and for each scale

10 equally separated orientations are selected from [0..π]. We then use normalized

cross-correlation rather than convolution to pre-compute the response for each of

these filters. Doing so compensates for intensity changes, while enabling seamless

fusion of multiple scale filter responses.

The measurement models are a function of the features detected by one or

more filters in the pre-processing stage. Other features such as color or shape can

also be used when available. We currently use only No = 2 different models defined

analytically as:

• M1=

RGn(x+, y+, λ1) + RGn(x−, y−, λ1) + RG−
n (x, y, λ2)

• M2=

RGn(x+, y+, λ1) + RGn(x−, y−, λ1) + RGn(x, y, λ2)

The superscripts over x and y indicate the road edges on both sides of the particle

computed from m and θ. Model M1 looks for a dark (with respect to the surrounding

50

region) road with thin parallel lines running along the road. This model is very

effective for urban roads as well as certain shadowed or occluded regions. Model

M2 is used to detect brighter roads, typical of rural or country roads. A weighting

scheme may also be used in the above models to emphasize certain features more

than others. For example, the sidewalk is very prominent in suburban areas and

so a higher weight factor can be multiplied with the road edge response. Adding

more models is straightforward and the method to switch between them is described

in the next section. The weight of a particle X = [x, y, θ,m] using model o is the

output of Mo at orientation closest to θ for the point (x, y).

For efficiency, image processing is done only within a small floating tile (61×

61 here) around the particles, allowing convolutions to be cached until a minimum

fraction of the particle set leaves its confines. This allows real-time performance on

large images (a second-level system of loading and unloading adjacent raw aerial

image files has not yet been implemented, as all of our runs have thus far been

limited to 2.5× 2.5 km square areas).

3.2.3 Integrating Multiple Models

Having defined various models that determine the road likelihood, there is the

issue of choosing the appropriate model. We adapt mixed-state tracking techniques

[73] to probabilistically detect and switch to the most dominant measurement model

at any given time. We define an extended state for each particle to be

Xi = (xi, Oi) (3.3)

where xi is as defined earlier and O ∈ {1..No} is a discrete variable labeling one

of No observation models. Thus Oi determines which observation model to use in

the measurement phase for particle si. We also define a state transition probability

matrix T which is an adjacency matrix representation of the possible state transi-

tions i.e. Tpq is the probability for a particle to change state from p to q. In order

51

to integrate mixed-state models into the particle filtering framework, it is sufficient

to split the sampling process of every iteration into two separate phases. In the

first phase, the state transition probabilities are sampled from to generate a new

observation model density for the particles. The subsequent sampling phase is the

same as described previously where particles with higher weights survive while the

others are eliminated. In the update phase, the observation model used to measure

the reliability of particle st
i depends on the value of Ot

i .

Figure 3.5: GPS plot (dotted red) and tracked path (solid blue) through the desert.
The darker curve shows the output of conventional JetStream using
the luminance gradient.

The formal steps used in the particle filter are described below. We begin

with St−1 of N particles st−1
i = {< xt−1

i , Ot−1
i , wt−1

i > |i = 1, ...N} in every iteration

followed by:

1. Sampling: Construct the nth of N new samples according to the following

two steps:

52

• Sample transition probabilities: Sample from P (Ot
i = q|Ot−1

i = p) = Tpq

to find Ot
i for each si.

• Sample process density: Sample from St−1 based on wt−1 by generating

a random number j with probability proportional to wt−1
j and setting

s′(t−1)
n = st−1

j .

2. Prediction: We apply our dynamics to each sampled particle as governed by

equation (3.1).

3. Update: The likelihood for this particle is computed according to the mea-

surement model specified by Oi. Weights are updated in terms of the latest

image data Zt.

In order to estimate a single most probable position that the vehicle could be

in after every time-step, a two-pronged strategy is adopted of first computing the

dominant model Ôt in force, and then calculating the weighted mean of only those

particles in that observation state. Ôt is computed according to

Ôt = arg max
j

∑
i∈Υj

wt
i where

Υj = {i|Xt
i = (xt

i, j)} (3.4)

3.2.4 Planning

An autonomous robot traveling along its precomputed path might be con-

fronted with several difficult scenarios, such as those encountered by many of the

entries in the DARPA Grand Challenge competition. A brief loss of GPS signal

might cause the robot to wander away from its pre-determined path. Purely on-

board sensors with its myopic field-of-view may not be able to locate nearby roads for

the robot to recover. Another robot traveling at an optimal speed along a straight

and level road might not be aware of an approaching hairpin bend at the edge of a

53

cliff, with potentially disastrous consequences if taken too fast. It is in such scenar-

ios that the aerial planner can be used to break free from deadlocked or dangerous

situations.

The planner is a straightforward extension to the road tracer. Every frame

during navigation, the road tracer is re-initialized by distributing particles uniformly

around the vehicle’s current GPS position. The tracer proceeds for a fixed number of

iterations, generating a trajectory as a dense series of waypoints (up to a few hundred

meters ahead). The plan is a series of closely-spaced waypoints leading to and along

the nearest road from the vehicle. These are generated by the state of the particle

filter as it searches forward in the current and succeeding route corridor segments

a fixed distance. A route segment is a corridor of appropriate width between two

successive waypoints returned by the path planning module. When the vehicle is

outside the corridor, a straight-line plan leading to the nearest point on the mid-line

of a segment is created, after which the waypoints come from the road tracer.

3.2.5 Results

We show the result of localization on both urban and off-road environments,

currently using only aerial images and GPS data. The particle filter was initialized

to use 1000 particles - though it is very robust with less than half that number

- and first distributed around the starting point. The choice of Gabor filter scales

depend on the resolution of the aerial imagery, and for the publicly available 1-meter

resolution photos that we used, λ2 = 10 was a fair approximation for the width of

most roads. To detect the road edges and sidewalks, we used λ1 = 1.

To compare our spatial tracker with the pure JetStream approach, we ran

the particle filter on a 1.2 mile track obtained during a drive through the southern

California desert. After verifying that the Navcom SF-2050G DGPS receiver was

accurate to a couple of meters, the particle filter was run similar to JetStream with-

out integrating any of the sensor data. This also enabled us to quantify deviation

54

Figure 3.6: Comparison of single-mode and mixed-mode tracking using models
M1 (dark roads) and M2 (bright roads). Solid yellow indicates that
the tracker is in mode M1 and dashed blue denotes M2. Notice how
tracking only with M2 causes mistracking on the darker roads.

from ground truth. Shown in figure 3.5 is a plot of the GPS track (dotted red) on

one segment and the estimated path (blue) of our tracker. The dark wayward curve

shows the output of the conventional edge tracking method as used by JetStream.

Due to the absence of strong edge cues, JetStream does not track correctly beyond

a few meters. By extracting the local texture information using Gabor filters, our

algorithm does significantly better. The mean distance error with the GPS curve

on this run was 3.24 meters and standard deviation was 3.1m. On another similarly

curvy segment, the mean was 1.4m and standard deviation was 1m. Estimating the

road width to be about 10m from the aerial image and the GPS data itself to be

accurate only to a couple of meters, we claim that our image processing alone is

robust to handle significant drop-outs on the GPS due to LOS issues.

55

Figure 3.6 shows a suburban neighborhood comparing single- and mixed-

mode tracking. The roads are either dark or bright, with abrupt transitions between

them. To track all possible roads without GPS is not practical as there is a lot of

clutter. The comparatively low cost Garmin GPS 16 used for this example was

especially unreliable in such environments with accuracy as bad as 25 meters in

some places. In addition to correcting the GPS path, our tracker automatically

switches to the appropriate model. The yellow sections indicate when the tracker

is in model M1 looking for dark roads, while blue denotes that M2 is dominant at

that point. The transition matrix used is T =

 0.7 0.3

0.3 0.7

 with a slightly higher

probability enforced for each particle to remain in the current mode. The value of

dmax was set to 20. Single-mode tracking using only M2 causes mis-tracking to occur

on the darker roads.

Figure 3.7: Corrected GPS positions (solid blue) at intersections. GPS estimates
(dotted red) were especially inaccurate at intersections.

Figure 3.7 shows zoomed in regions of corners where the GPS (red) tracks

have been corrected by our contour extraction method. Figure 3.8 shows a short

GPS run in dotted red. This is difficult both in terms of highly inaccurate GPS

readings at the corners, as well as the presence of shadows and trees that mask the

road in some places. While GPS-driven dynamics simply do not work correctly in

56

Figure 3.8: Using texture-driven dynamics and model-switching (not shown) with
highly inaccurate GPS (red) positions. Solid blue curve shows cor-
rected path

this scenario, texture-driven dynamics (blue) is able to trace the road for the entire

length of the segment. The particles have enough momentum to keep following the

strongest road likelihood without changing direction at every wiggle in the GPS

data.

Illustrated in figure 3.9 is a typical scenario of what happens when a GPS

receiver loses signal due to over-passes or tunnels. There is a sudden glitch in the

GPS outputs, as points veer off to the sides before homing in on the actual position

again. Texture-driven dynamics can easily handle such situations as shown in the

figure. This situation might also call for some image processing hacks that detect

features orthogonal to the road, but that was not required in this case as particles

were distributed far enough along the road to overcome negative filter responses

under the over-pass.

Fig. 3.10 demonstrates how our algorithm can assist in localized planning.

The figures show in green the track of Caltech’s 2004 DARPA Grand Challenge

57

Figure 3.9: Using measurement likelihood-driven dynamics to handle characteris-
tic glitches in GPS data caused by over-passes and bridges

vehicle’s GPS locations during the 2004 race. When initialized with the vehicle’s

current GPS position, the particle filter is run for t iterations returning a dense track

p0:t of waypoints that are very likely to be on the road. Drawn in yellow, is this

prediction of the road immediately ahead or in the vicinity of the vehicle. Using

such a plan could have helped their robot avoid and recover from certain off-road

situations they encountered during the race.

The bottom two images in Fig. 3.10 are the result of road tracing in later

mountainous segments of the race course. While the dynamics of our particle filter

can effectively handle various types of roads exhibiting sharp corners as well as high

curvature, the likelihood function is able to constrain the particles on the road purely

by analyzing the local texture in the aerial image. Even on such low quality images

with poor contrast, this is a powerful cue that can assist the navigation modules,

for both localization and planning.

58

3.3 Summary

We have presented two parts of an autonomous architectural modeling system

that uses aerial imagery for view planning and robot localization. The first is a ran-

domized view planner that efficiently builds incremental paths to maximize coverage

and quality. The problem is framed as an “art gallery” problem from computational

geometry, and the task is to compute an optimal watchman route in which every

face of the building polygon is seen at least once. Rather than binary line-of-sight or

field-of-view constraints, we formulate a goodness function that takes into account

effects of foreshortening and camera resolution. A particle filtering method is then

introduced that links together guard points accounting for both visual coverage and

robot dynamics.

The second part is a system for road-following on desert and urban roads

that relies on road texture analyzed from satellite imagery. Roads near the vehicle

are traced, facilitating both vehicle localization as well as generating medium-term

plans that avoid local obstacles. We have demonstrated techniques to correct erro-

neous GPS information for the purpose of vehicle localization. In contrast to map-

matching approaches that use digital road-maps, our algorithm works on aerial

images of diverse environments. Image processing and probabilistic methods are

combined to make an inference about the most likely road that the vehicle is trav-

eling on, based on explicitly defined road models. Detecting and switching to the

correct model is done automatically by the mixed-state tracker. Results are shown

on a range of images by correcting inaccurate GPS position estimates or tracing the

road ahead of the vehicle to guide it in treacherous terrain.

59

Figure 3.10: Top: GPS plot of a 2004 DARPA Grand Challenge vehicle’s route
(green) on raceday and predicted path (yellow) from a fixed location
(red dot) at different sections of the course. The predicted distance
is approximately 325 meters with the particle filter run for 75 itera-
tions. The original corridor width for each segment is widened by a
factor of 10. Bottom: Road tracing for 175 iterations in a high alti-
tude segment of the 2004 course with the corridor width (not shown)
widened by a factor of 10.

60

Chapter 4

RECOVERING CLEAN TEXTURE MAPS FROM

SEQUENCES OF PARTIALLY OCCLUDED FACADES

Chapter 3 described an algorithm to plan a series of viewpoints for the robot

to capture images from. This chapter focuses on recovering the background building

facade from this image sequence, even when a majority or all of the captured images

contain views of a foreground object rather than the building. Temporal search

over the timeline for at least one such background view should guide the inpainting

process rather than a traditional spatial search. The key technical issue becomes

identifying which view, if any, is of the background, and this chapter presents several

techniques which accomplish this both accurately and efficiently. Building upon and

extending the work first presented in [131, 85, 86], we make contributions to both

of the large problems set out above:

• We automatically identify mosaic regions polluted by foreground objects through

a robust measure of pixel color variance over registered images

• We introduce a novel modification of an exemplar-based inpainting algorithm

due to Criminisi, Pérez, and Toyama [27]— CPT inpainting—to infer building

pixels in polluted regions via combined temporal and spatial search

• We utilize automatically-learned layer appearance models to improve the speed

of the temporal inpainting process while maintaining accuracy

61

Building sequence

Feature-based registration
using RANSAC

Affine rectification and
bundle adjustment

Stack timeline of background
stabilized images

Compute median
mosaic

Stage 1: Timeline inpainting
of majority-occluded pixels

Stage 2: Pure spatial inpainting
of unanimously occluded pixels

Extract patches for
training using
motion cues

Learn static appearance
model for patches

Calculate Median
Absolute Deviation

and mark outlier
pixels as holes

Final clean mosaic

Figure 4.1: System diagram of timeline inpainting for recovering clean texture
maps.

In the next three sections we detail our timeline inpainting framework for

recovering a partially-occluded background layer from image sequences. The major

components of the complete system are diagrammed in Figure 4.1. Section 4.1

covers the steps related to image registration and polluted region identification (blue

and brown groups of boxes, respectively); Section 4.2 presents our methods for

discriminating between the foreground and background layers based on appearance

(yellow boxes); and Section 4.3 describes our modifications to CPT inpainting (green

boxes). Finally, Section 4.4 shows integrated results for several challenging sequences

before we conclude and examine some future directions.

A review of standard CPT inpainting, including the definition of many terms

and variables used was presented in the Chapter 2.

62

Figure 4.2: Panoramic mosaic (bottom) obtained by stitching together individual
frames (top) from a sequence. Reproduced from [19].

4.1 Image Registration and Pollution Detection

In order to pre-process the image sequence such that corresponding features

are registered over multiple frames, we must first stabilize the background. After

establishing the mosaic reference frame and its set of implied timelines, we then

apply several statistical and appearance tests to conservatively identify potentially

polluted regions for subsequent inpainting.

4.1.1 Motion Stabilization

Creating a planar mosaic via homography estimation has been thoroughly

studied [30, 61, 152]. Figure 4.2 shows a result from the work of [18] where all the

frames in a given image sequence are stitched together to create a larger mosaic.

The geometric transformation between images is described by a homography, which

is valid under one of two conditions: (i) the camera is rotating about its center

or (ii) the image surface is a plane. Since we are working with building facades,

planarity is a reasonable assumption to make. Estimation of the homography is

done through RANdom SAmple Consensus (RANSAC) [45], a robust technique

63

Figure 4.3: 16 of 18 frames from the Building A sequence.

to estimate parameters of a mathematical model in the presence of outliers. The

method works by considering many random subsets of data, each containing the

minimum number of samples required to compute the models parameters, and then

selecting the parameter set with the largest number of inliers. In the case of a

homography, minimal sets of 4 point correspondences are extracted.

Figures 4.6 and 4.7 (reproduced from [19]) illustrate the image matching

process. Features are extracted from overlapping images and a set of putative cor-

respondences established by intensity matching within a small neighborhood. Since

each match is independent of the other, a good fraction of these correspondences are

outliers inconsistent with the global motion. After RANSAC, the correctly matched

points are sieved out from the feature set.

64

(a)

(b)

Figure 4.4: Result from the first two stages of our algorithm for the Building A
sequence (Fig. 4.3). (a) Median mosaic; (b) Polluted region Ω to be
fed to the inpainting algorithm for filling;

We robustly compute the dominant planar motion, assumed to be due to the

building, between successive pairs of images It, It+1 over a sequence of N frames1

captured with a rough 1-D scanning motion along the facade. The initial frame-to-

frame homographies H∗
t,t+1 are computed by matching features [140] in both frames

followed by RANSAC for outlier rejection [63]. Taking frame number ref = dN
2
e of

the sequence as the mosaic reference frame, the homographies are then concatenated

1 The frames are automatically warped to remove radial distortion and affinely
rectified with a procedure described in [63]

65

(a)

(b)

Figure 4.5: Result from the inpainting stages of our algorithm for the Building
A sequence (Fig. 4.3). (a) Result after timeline inpainting Stage 1
(11× 11 patches); (b) Result after Stage 2 (21× 21 patches)

together to align each frame with the mosaic—i.e., H∗
ref ,ref is the identity; for t < ref ,

H∗
t,ref = H∗

ref−1,ref · · ·H∗
t+1,t+2H

∗
t,t+1; and similarly for t > ref . Warping each frame

It by H∗
t,ref with bilinear interpolation results in a mosaic-aligned frame W∗

t .

Computing frame-to-mosaic homographies this way worsens misalignment er-

rors for frames distant from the reference. Consequently, we refine the homographies

by running the feature detector again on adjacent pairs of warped images W∗
i ,W

∗
j

starting from W∗
ref and working outward. At this point misalignments across the

66

Figure 4.6: Obtaining putative correspondences. (a) An interest point on the
left image and (b) its corresponding search window shown as a green
rectangle. (c) and (d) Possible matches are ranked by computing the
Sum-of-Squared Differences or normalized cross-correlation between
image patches (in red). Reproduced from [19].

sequence are usually within 2-3 pixels; these are reduced by running a bundle ad-

justment to minimize reprojection errors across sets of overlapping frames. After

cascading each of these transformations, we obtain a final set of refined frame-to-

mosaic homographies Ht,ref and stabilized images Wt that are padded to the mosaic

size.

67

(a) (b)

Figure 4.7: (a) Set of all putative correspondences. (b) RANSAC inliers consistent
with a single global transformation. Reproduced from [19].

4.1.2 Identifying Problem Pixels

Each location p = (x, y) in the mosaic reference frame has a set of pixels

from the background stabilized images {Wt(p)} associated with it which we call its

timeline T (p). The size of each timeline |T (p)| may vary from 0 to N depending

whether the pixel at p was imaged or not in each frame. Intuitively, since all pixels on

the building facade exhibit the dominant motion, they should appear stationary in

the mosaic whereas foreground objects such as trees and signs move due to parallax.

Given that each T (p) contains an unknown mixture of background and foreground

object pixels, our goal is to correctly pick or estimate each background pixel M(p)

where |T (p)| > 0, forming a building mosaic M. In this paper we assume that the

lateral and vertical limits of the building associated with corners, the roofline, the

ground, etc. are given.

As asserted in the previously, a robust estimator for M(p) under the assump-

tion that foreground pixels are in the minority (i.e., outliers) in T (p) is the temporal

median M(p) = median(T (p)). This is computed separately for each color channel,

giving rise to a median mosaic Mmed , an example of which is shown in Figure 4.4(a)

68

Figure 4.8: Every pixel in M has a timeline of pixels associated with it in the
stabilized sequence

(for the “Building A” sequence in Fig. 4.3). This estimator fails, however, when

foreground pixels are in the majority in a particular timeline, and several artifacts

can be seen in the figure. Since the background is stabilized, we have found that

except for large homogeneous foreground regions or camouflaged foreground objects

with almost the same color as the background, the likelihood that T (p) has a ma-

jority of foreground pixels is proportional to the variability or “spread” of its color

distribution. To robustly measure this variability, we use the median absolute devia-

tion (MAD) [159], defined as MAD(T (p)) = median(|Wt(p)−median(T (p))|) over

all t in the timeline. A scalar MAD value is obtained at each pixel by computing it

separately for each color channel and summing. A high MAD value at p indicates

a higher likelihood that Mmed(p) is unreliable, so unreliable median mosaic pixels

are filtered out by thresholding their MADs—these are so-called MAD outlier pix-

els. For normal distributions, the X-84 rejection rule [51] has been used to remove

outliers using the MAD. Since the distribution of MAD values over all timelines

69

Minority-occluded timeline

Majority-occluded timeline

Unanimously-occluded timeline

Figure 4.9: Three categories of timelines. A median filter can recover pixels from
minority-occluded timelines, while spatial inpainting is necessary for
the unanimously occluded timelines. A primary concern in this work
is on how to identify the three categories and recover building pixels
from the majority-occluded timelines.

more closely approximated an exponential distribution in our sequences, the mean

MAD value was chosen as the threshold. The raw MAD outlier mask is spatially

smoothed with a morphological majority operation, forming the polluted region (or

set of regions, more generally) to be filled. We call this the target region Ω in the

sense of CPT inpainting (see Appendix). An example is highlighted in black in Fig-

ure 4.4(b). Note how well it matches the locations of foreground-induced artifacts

in the median mosaic of Figure 4.4(a). Another class of pixels put into Ω is typically

due to slight misregistrations of high-frequency features, and this can also be seen in

the example around window panes and thin lines. The three categories of timelines

for a particular patch are illustrated in Figure 4.9.

4.2 Discriminating Building Patches

The major hurdle to overcome in the majority-occluded scenario is determin-

ing which patches in a timeline come from the building. Let T (Ψp) = {Ψ1
p, . . . , Ψ|T (p)|

p }

70

be the timeline of patches centered on a location p. Given a building likelihood func-

tion B(Ψt
p) that intuitively captures the “buildingness” of a particular patch, the

most likely patch in the timeline to have come from the building is computed as

argmaxt B(Ψt
p). Very low values of B should correspond to unanimously-occluded

situations where there is no building patch in T (Ψp).

The building likelihood function that we use is a product combination of

motion and appearance cues:

B(Ψt
p) = pmotion(Ψt

p)papp(Ψ
t
p) (4.1)

Intuitively, the motion cue encodes the depth information that we get from parallax;

less motion after stabilization means a higher likelihood of having come from the

building. The appearance cue incorporates color, texture, or other patch character-

istics computable from one image. Such features as the redness of the bricks can

help identify a patch as having come from a building rather than a leafy green tree

in the foreground. We now describe these in detail.

4.2.1 Motion likelihood

The intersection of a pair of successive, thresholded difference images was

suggested in [161] as a method for identifying foreground pixels. By converting

the warped images to grayscale and scaling their intensity values to [0, 1] to get

{W′
t}, we can adapt this approach to define a motion energy or foreground image

at time t as Ft = (|W′
t −W′

t−1|) ⊗ (|W′
t+1 −W′

t|) where | · | is the absolute value

and ⊗ is the pixelwise product. Letting µ be the mean foreground image value

over all t, we define the motion likelihood for an individual pixel at p in warped

image t as pt
motion(p) = e−Ft(p)/µ, and pmotion(Ψt

p) as the fraction of pixels in Ψt
p

with motion likelihood above τmotion . This threshold was empirically fixed at 0.1 for

all the sequences. A conservative estimate was chosen since this is usually used in

71

conjunction with the appearance-based patch classifiers – a more reliable metric for

filtering out bad patches.

4.2.2 SSD appearance likelihood

The sum-of-squared differences (SSD) |Ψp−Ψq|2 between the pixel intensities

of two patches Ψp and Ψq is the basic similarity measurement used for matching

in CPT inpainting. In [131] we used SSD to define the appearance likelihood for a

particular timeline patch Ψt
p in the following way:

pSSD
app (Ψt

p) = exp(−min
q∈Φ

|Ψt
p −Ψq|2) (4.2)

where the source region Φ is defined as the complement of the target region Ω—i.e.,

the portion of the median mosaic that we regard as foreground-free and thus assumed

building. In words, the SSD-based building appearance likelihood is proportional

to the similarity between a candidate patch and its best match in Φ. The intuition

here is that many buildings have repeated patterns such as windows, doors, columns,

bricks, etc., so building timeline patches in Ω should find better matches in Φ than

foreground patches and thus have higher values of pSSD
app .

4.2.3 Learned appearance likelihood

Although the accuracy of the results obtained in [131] using pSSD
app were quite

good, a drawback of this approach is the expense of computing it and its inadequacy

as a binary classifier to prevent foreground patches from polluting the mosaic. To

find the best match, an exhaustive search over all candidate locations q ∈ Φ, with

repeated calculations of the SSD, is required. Since the essence of the problem

is deciding whether a given image patch belongs to the building or not, we have

also investigated several classifier-based approaches to formulating papp . These have

proved significantly more efficient allowing more of the background to be recovered

from the timeline without appreciable diminution of the quality of the final mosaic.

72

(a) (b)

Figure 4.10: Learning a building appearance model from automatically labeled
patches: (a) Examples of building patches sampled from Φ (Building
A sequence); (b) Negative examples derived from RANSAC outliers

Many practical classification and semantic recognition algorithms [165, 172,

107] rely on supervised training, with a user manually indicating positive and nega-

tive examples. Learning an a priori patch-level model of building appearance from

a large set of examples is possible, but the value of such models would be highly

dependent on architectural style, building materials, and so on. Seeking to allow

our algorithm to work on any sequence of building images, we instead attempt to

automatically label a training set of patches which are unambiguously foreground

or background based on motion cues, permitting a sequence-appropriate classifier to

be trained in the standard way. We have experimented with several types of feature

vectors F and classifiers C; to distinguish the appearance likelihoods derived from

them we use the notation pF+C
app .

73

Frame pPCA+KNN
app pFB+KNN

app pFB+SV M
app

Figure 4.11: Comparison of learned appearance models on magnified subimage of
tree branch. Green indicates that the patch centered that pixel was
classified as building while red indicates foreground

Automatic labeling

Nominal positive examples of building patches were selected from the non-

polluted mosaic region Φ by sampling over a regular grid. To try to capture im-

portant building features, we augmented this set with patches centered on Harris

corners detected in Φ, as well as inliers from the RANSAC process during the im-

age registration stage. Negative examples—that is, foreground patches belonging to

trees, foliage and so on—are harder to generate. Simply sampling from part of an

image Wt in the polluted region Ω may retrieve a building example if the timeline

there is not unanimously-occluded. Instead, we use the RANSAC outliers from the

image registration stage as the centers of non-building patches, a reasonable as-

sumption since the dominant motion is due to the building. RANSAC features that

correspond to occlusion-junctions with both foreground and background are also to

be marked as a negative example. Figure 4.10 shows a subset of the patches for the

Building A sequence that were used for training. Very few of the building patches

are mislabeled, but one can see that some fraction of non-building examples actually

are from the building. Since these are in the minority, we rely on the generalization

ability of our classification algorithm to be robust to these incorrect labellings.

74

Features

We investigated two techniques for reducing the dimensionality of the raw

image patches for practical training. First, we used Principal Component Analy-

sis (PCA), a standard approach in recognition [163], on each cluster of positively-

and negatively-labeled patches. PCA is mathematically defined as an orthogonal

linear transformation that transforms the data to a new coordinate system such

that the greatest variance after projection lies on the first coordinate, the second

greatest variance on the second coordinate, and so on. As a dimensionality reduc-

tion tool, PCA enables us to store the most important characteristics of the data

by keeping only the lower-order principal components and ignoring the less impor-

tant higher-order ones. The many applications of PCA in computer vision include

face recognition through eigenimages [163], feature matching [78], texture synthesis

[143] and texture manipulation [105]. In our case, given the automatically generated

patches, roughly the first 30 principal components (eigenpatches) were retained after

PCA.

Observing that building patches are likely to contain prominent linear struc-

tures in stereotypical horizontal and vertical orientations vs. the more haphazard

distribution of tree limb orientations, the second feature extraction technique used

was a filter bank (FB). Filter banks have been widely used for texture recognition

[97, 165] as well as object/scene categorization [172, 107]. We employ the Base

Filter Set used by [165] which consists of 34 filters: 8 orientations at 2 scales for 2

types, plus 2 isotropic filters. For gross color information, we append the mean R,

G, and B color value of each patch to obtain a 37-dimensional feature vector. Other

color spaces could be used as well.

Classifiers

We compared two classification methods: a distance-weighted k-nearest neigh-

bor voting scheme (KNN) [39] and support vector machines (SVM) [75]. A value of

75

k = 10 with a hard threshold of 0.85 as a decision boundary was used for the former

classifier, and a radial basis function (RBF) kernel (γ = 1.0) for the latter. These

parameters were chosen by running cross-validation experiments on the training set.

A comparison of the output of the layer classifiers on a subimage from the

Building A sequence containing a branch in front of a window is shown in Figure

4.11. Generally, pFB+SV M
app exhibited the best performance, and it was used for all

inpainting results shown here unless otherwise noted.

4.3 Timeline Inpainting

We create a timeline mosaic Mtime by modifying CPT inpainting (see Ap-

pendix for review) in five major ways:

1. There are two stages. Stage 1 consists of searching temporally over timelines,

while Stage 2 is traditional spatial inpainting. In Stage 1, each patch-wise

pixel copy to the polluted region Ω comes from one timeline patch Ψ∗
p̂ ∈ T (Ψp̂)

maximally likely to have come from the building. An example result of this

stage is shown in Figure 4.5(a).

2. During Stage 1, the updated confidences C(p) of newly-filled pixels are set to

the motion likelihoods p∗motion(p) of the pixels in Ψ∗
p̂

3. To compensate for photometric disparities through the sequence, copied patches

are radiometrically aligned with the mosaic

4. If the building likelihood B(Ψt
p̂) for every patch in T (Ψp̂) is very low (below

a threshold), Ψp̂ is not filled at that time. Stage 2 begins when all remaining

areas of Ω meet this stopping criterion

5. Stage 2 is pure CPT inpainting with a few heuristics based on architectural

patterns and symmetry to minimize mismatching errors. An example result

of Stage 2 is shown in Figure 4.5(b).

76

Each of these modifications is explained below:

Stage 1 Timeline patch selection Consider a patch Ψp̂ in the mosaic Mtime

that is the next to be inpainted according to the CPT priority scheme. Pixels in its

unfilled part Ψp̂∩Ω will come from the corresponding part of one timeline patch Ψ∗
p̂∩

Ω. We copy pixels from the timeline rather than Φ to maximize correctness, improve

feature alignment, and allow for the retention of unique features not present in Φ.

To pick a Ψ∗
p̂ that is most likely to contain building pixels rather than foreground

pixels, we rely upon the building likelihood function (4.1) defined in the previous

section.

For every patch in T (Ψp), we jointly measure patch t’s motion and building

appearance likelihood with the formula B(Ψt
p̂) = pmotion(Ψt

p̂)papp(Ψ
t
p̂). Pixels are

then copied from Ψ∗
p̂ where ∗ = argmaxt B(Ψt

p̂). As explained in the Appendix, the

circumflex notation simply indicates the particular patch that is next in line to be

filled.

Confidence term The motion likelihoods p∗motion(Ψp̂ ∩ Ω) are copied as the confi-

dence values of the newly filled-in pixels in Ψp̂∩Ω. This tends to limit the propaga-

tion of bad choices in subsequent iterations—i.e., patches bordering areas of lower

motion likelihood (i.e., higher chance of being foreground) are bypassed for high

motion likelihood areas first (i.e., lower chance). The decaying confidence scheme

of CPT inpainting does not apply because timeline patch pixels in the interior of Ω

are no less reliable than those near its edges.

Photometric alignment Lighting changes in the scene and automatic camera

controls can pronounce the seams between overlapping patches copied into the fi-

nal mosaic. Graph-cut and gradient-domain algorithms [152, 125] have been used

to minimize these effects in mosaicing and texture synthesis. Since most of the

photometric variations in our sequence arise due to varying camera parameters, we

experimented with exactly recovering the camera response curves for radiometric

77

Frame index Without correction With correction

Figure 4.12: Results of photometric correction during inpainting on a section of
the Building C sequence. Darker shades of blue in the frame index
image indicate patches copied from earlier in the timeline

compensation [80]. However this proved very sensitive to geometric misalignments

and foreground objects. Noting that an affine transformation across each RGB chan-

nel is able to fully account for contrast and brightness changes [18], we simply use

a multiplicative term λk that represents the contrast changes. Since this was able

to capture most of the radiometric changes, we chose not to introduce more free

parameters into the model. When pixels from the best chosen patch Ψ∗
p̂ are to be

copied into the timeline mosaic Mtime , λk is estimated by least squares minimization

over the overlapping pixels. This correction is applied before the missing pixels are

filled in.

Figure 4.12 shows the result of inpainting with and without photometric

alignment on a section of the Building C sequence. This sequence had significant

lighting changes (sun was hidden behind the clouds for a number of frames) and

reflections off the windows. The mosaics with photometric correction appear much

more consistent and visually pleasing. Our model is applied locally to a small patch,

but is still able to propagate across a larger scale.

Stopping criterion To prevent copying patches from timelines where the back-

ground was never imaged, we set appearance and motion thresholds Tapp and Tmotion.

78

Tapp is essentially the binary decision from the classifier while Tmotion is set to 0.85

requiring atleast 85% of the pixels to have low motion energy. Specifically, if for

every patch in T (Ψp̂) either the motion likelihood pmotion(Ψt
p̂) < Tmotion or appear-

ance likelihood papp(Ψ
t
p̂) < Tapp, Ψp̂ is not filled. Stage 1 halts when this condition

is true at every remaining p ∈ Ω. The holes that are left are generally much smaller

than Ω0, with more building structure revealed, and thus Stage 2 can consist of pure

inpainting with much better results than if it had been run in place of Stage 1.

Since (4.1) operates on patches, it does not guarantee against blemishes in the

mosaic that occur when tiny fragments of foreground pixels are copied over. Thus

a per-pixel decision is also made before copying patches from the timeline - once

again based on appearance and motion. Pixels with motion likelihood below τmotion

are not copied to Mtime , preventing thin foreground structures that are usually

more sensitive to motion than appearance. Similarly, a threshold on the appearance

likelihood τapp (learned from Gaussian color models) can be defined to avoid copying

bits of obvious foreground elements like green leaves into the mosaic.

Stage 2 spatial inpainting Mosaic pixels that were never imaged in the timeline

are detected in Stage 1 and marked as a hole - to be completed in Stage 2 by a general

spatial inpainting algorithm. Given that most of the background has been recovered

in Stage 1, only a small fraction of pixels require conventional inpainting. We use

the CPT algorithm of [27] with a few heuristics derived from domain knowledge.

Firstly, we search within the warped sequence W rather than the result of Stage 1

to improve the likelihood of finding a good match. Secondly, since building facades

exhibit grid-like patterns, we limit the SSD search to lie within a horizontal or

vertical band centered on the target patch. This serves to speed up the search

through the sequence and reduce the chances of picking a wrong patch to copy into

the hole.

79

Figure 4.13: 16 of 22 frames from the Building B sequence.

4.4 Experimental Results

4.4.1 Texture Map Recovery

We show the overall quality of our timeline inpainting algorithms both at

intermediate stages and in final results in Figures 4.5, 4.15, and 4.16. The Building

A sequence (Figure 4.3) consisted of a subset of 18 360 × 240 frames taken at

intervals of every 50 frames from a longer sequence. Building B and C sequences

were captured as separate images by a digital camera and resized to 320 × 240

resolution. In all cases, the camera was moving roughly parallel to the building

facade. Each sequence has several objects, primarily trees, which occlude large

80

(a)

(b)

Figure 4.14: Result from the first two stages of our algorithm for the Building B
sequence (Fig. 4.13). (a) Median mosaic; (b) Polluted region Ω to
be fed to the inpainting algorithm for filling;

parts of the building.

The median mosaic Mmed for all three sequences is mostly quite good, re-

covering almost all of the facade cleanly. Foreground objects closer to the camera

are almost entirely removed because their large parallax motions cause occlusions

to be brief and thus foreground pixels are in the minority in the timeline vs. build-

ing pixels. Significant problem areas are created by the more distant trees, which

exhibit relatively little parallax motion. These objects occlude many building pix-

els in a majority of frames, confounding the median filter. Areas where Mmed is

81

(a)

(b)

Figure 4.15: Result from the inpainting stages of our algorithm for the Building
B sequence (Fig. 4.13). (a) Result after timeline inpainting Stage 1
(11× 11 patches); (b) Result after Stage 2 (21× 21 patches)

poor correlate well with the MAD outliers. It appears that the unfilled pixels af-

ter Stage 1 inpainting also match well with perceived unanimously-occluded areas.

These considerably smaller holes are well-filled by Stage 2, though there are some

high-frequency artifacts that we attribute to slight misregistrations in the stabiliza-

tion process. The horizontal and vertical boundaries of the facade were manually

specified in this work, though these boundaries could conceivably also be found

automatically.

Restricting patch copies to be from the timeline makes the result sensitive to

82

Every alternate frame from 6 to 14 in an 18 frame sequence. Note lighting
variations and window reflections.

(a) (b)

Figure 4.16: Building C sequence: (a) Median mosaic; (b) Result after timeline
inpainting Stage 2 (11× 11 patches in Stage 1, 21× 21 in Stage 2)

the quality of the initial registration. Frame-to-frame transformations are modeled

as homographies which are sensitive to any out-of-plane depth discontinuities. After

bundle adjustment, misalignments in the Building A sequence were less than 1

pixel allowing patches from across the sequence to line up correctly in Stage 1 as

shown in Figure 4.5(a). In contrast, the Building B sequence contains two planes

at different depths, resulting in the dominant plane for image registration shifting

from the left side to the right in the middle of the sequence. This effect is reflected

in the result of Stage 1 (Figure 4.15(a)) where one can see that edges of the second

story window do not line up perfectly. The Building C sequence in Figure 4.16

posed different challenges in the form of large variations in the lighting conditions

and reflections off the windows. This hampered registration due to the difficulty of

finding correspondences and also compromised the quality of pure spatial inpainting

in Stage 2 due to the lack of accurate matches. Nevertheless, photometric correction

reduces the seams and the synthesized mosaic is very similar to the true facade, parts

83

(a)

(b)

Figure 4.17: Result of CPT inpainting on MAD outliers of (a) Building A mosaic
in 4.4b and (b) Building B mosaic in 4.14b.

of which were never imaged.

Figure 4.17 demonstrates the need for timeline inpainting in Stage 1. The

results of CPT inpainting on the MAD outliers for both Building A and B sequences

are shown. While the smaller holes can be filled in effectively, larger contextual infor-

mation such as window positioning and edge alignments are not enforced. The result

is a completely haphazard hallucination of facade elements, ignoring the temporal

cues that timeline inpainting exploits.

84

4.4.2 Classification

The quality of the static classifier in distinguishing between building and

non-building pixels based on the local statistics in a patch has a direct impact on

the texture map quality. In addition to preventing small foreground pixels from

bleeding into the final mosaic, it also selects timeline building patches that the

motion likelihood alone would otherwise miss because of its temporal coarseness.

A few key factors can be noted from Fig. 4.11. All methods seem to detect

most of the foreground or tree pixels. PCA essentially works on the RGB color values

and does not seem to be able to pick up some of the high frequency variations that

the filter bank can. Texture-based classification is thus able to do marginally better

on some of the tiny leaves or thin branches that occlude the building. SVM seems

the cleanest among all three methods for segmentation. It can generalize well over

the training set with several examples and the classification is done in fixed time.

In contrast, nearest neighbor approaches become very inefficient as we add more

patches.

For quantitative results, we ran a leave-one-out test on the 2,908 patches

in the training set for Building A. The best result using PCA was 15.1% error

with 10 nearest neighbors and a distance threshold of 0.85. The lowest error using

filter banks was 11.2% under the same settings. The best accuracy by far was

obtained with SVM which misclassified only 3.6% of the training examples. On

closer inspection, it was observed that most of these errors could be attributed to

incorrect labels in the training examples, demonstrating the generalizing power of

SVM.

Figure 4.18 demonstrates the shortcomings of pure SSD-based appearance

likelihood [131]. As long as a background patch is present in the timeline, SSD

matching with the rest of the mosaic is mostly able to recover it. However, setting

an arbitrarily high motion threshold τmotion is the only way to filter out bad patches.

85

Figure 4.18: SSD-based matching relies on motion only to filter out bad patches.
This is not very reliable when the foreground is large and homoge-
neous.

The figure zooms in on a couple of particularly challenging areas where building pix-

els were seldom, if at all, captured by the camera. Keeping the rest of the system

intact while changing the appearance model to use SSD reveals how large homoge-

neous foreground patches can pollute the mosaic. In contrast, the appearance-based

classifiers are better at sifting through the timeline patches.

4.4.3 Timings

The timeline inpainting algorithm presented here is fairly efficient. On our

test machine,2 the image registration and polluted region identification steps take

less than 2 minutes for each of the three building sequences, and learning appearance

likelihoods with SVM from thousands of training patches takes less than a minute.

The bundle adjustment step is the only portion of the system written in Matlab;

the rest is coded in C/C++. The speed-ups obtained in Stage 1 of the inpainting

by using classifiers vs. the exhaustive search of the SSD method are documented

in Table 4.1. The slowest part of the algorithm is Stage 2 of inpainting, taking up

to 10 minutes per sequence as it must search over the entire mosaic for matches

(although the grid constraints discussed above help considerably).

2 A laptop running Windows XP with a Pentium M 1.7 GHz CPU and 512 MB
RAM

86

Sequence pSSD
app pPCA+KNN

app pFB+KNN
app pFB+SV M

app

A 1176.9 82.0 97.7 89.5
B 1983.4 130.6 261.8 121.7
C 1422.2 93.1 118.7 112.3

Table 4.1: Timeline inpainting Stage 1 execution times (in seconds) using different
appearance models

4.5 Summary

We have presented a novel approach to detecting and removing occlusions

of building facades in image sequences using a combination of temporal and spatial

inpainting. We also described a method of training appearance-based classifiers

from a coarse RANSAC-based segmentation to recognize static imagery. Motion

is used to bootstrap the learning and generalize over the training examples. We

have applied the learned appearance models and motion cues in a spatiotemporal

inpainting algorithm to recover texture maps of occluded building facades. Various

types of visual features—both intensity-based and texture-based—were proposed

for accurate classification of image patches. Good results were shown on building

sequences that are quite difficult due to the high amount of structure accentuating

slight errors or misalignments. We believe that the other algorithms cited here would

not be able to recover as much of the facade behind the trees as well as we do.

87

Chapter 5

DISCOVERING NEAR-REGULAR TEXTURES ON

BUILDING FACADES

The previous chapter showed how to recover the building facade using a

combination of motion and appearance models from an image sequence. Parallax

provides a means to separate out the background and foreground layers, upon which

patch-wise appearance models can be learned. The combination of spatial and

temporal cues are then used to recover as much of the building pixels in the texture

map mosaic, as long as the pixel was imaged in at least one of the views. We now

begin to address the issue of texture map recovery from a single image knowing

that it is of a building. In addition to foreground objects, other challenges include

removing graffiti on the walls, window reflections, and shadows.

Section 1.3 describes our system infrastructure for using high-level rules to

extract semantic information from images. One semantic rule is that windows often

appear as part of a larger grid. This rule can be powerful enough to recognize

windows without any prior appearance models. We introduce an algorithm based on

Markov Chain Monte Carlo (MCMC) simulation to parse this rule – i.e., discover and

group grid structures in an image. Our customized proposal distribution is efficient

and guides the simulation to converge quickly. Although the idea of identifying

window patterns to glean additional information about the facade has been used

by [92, 111, 115], our grouping algorithm is novel and not confined to the building

domain alone.

88

Figure 5.1: Examples of Near-Regular Textures from the PSU NRT database [91].

The notion of a grid or lattice pattern corresponds to the definition of a

regular texture – a regular tiling of easily identifiable elements organized into strong

periodic patterns. These tiles, called texture elements or texels, form the basic

atomic unit of the repetitive pattern. Appearance models, while powerful, only

rely on local information. Modeling all appearance and geometric deformations

of a texel is hard. Instead, by discovering and grouping repetitive elements, we

can exploit higher-order topological constraints characteristic of many man-made

structures. Isolated elements that fail to pass a detector/classifier could still be

correctly grouped due to global coherence. The key observation developed in this

chapter is that building facades are Near Regular Textures (NRTs). Identifying and

parameterizing this texture provides a platform for image understanding.

The next section defines near-regular textures and its relation to building

facades, reviewing previous work on discovering and parameterizing them from im-

ages. We then describe two approaches to texture discovery specifically tailored in

one case to brick wall images and in the other to window grids typically seen on

large office buildings (both frontoparallel and under perspective). Instead of infer-

ring the symmetry group of the pattern, for now we take user input indicating which

type of texture it is. In the first case, there are several hundred bricks visible in

a high-frequency running bond pattern, requiring a very efficient global approach.

The second algorithm is a more general Bayesian approach to grouping elements

89

Figure 5.2: Buildings and Near Regular Textures.

according to lattice constraints. Finally, results are shown on a variety of synthetic

patterns as well as building images.

5.1 Near-Regular Textures and Discovery

A near-regular texture (NRT) is a geometric and photometric deformation

from its regular origin of a congruent wallpaper pattern formed by 2D translations

of a single tile (texel) [105]. They can be encountered in buildings, wallpapers,

tiles, windows, and arts. Figure 5.1 shows some examples from the PSU NRT

database [91]. It is apparent that despite random noise and stochastic variations,

these patterns exhibit a tendency towards regularity and symmetry. Liu et al. [106]

states that NRTs may be categorized according to departures from regularity along

the dimensions of color, intensity, global or local geometric deformations, and pixel

resolution.

The starting point for classifying a pattern as an NRT is the concept of

regular tiling [57] which states that all translationally symmetric regular textures

can be generated by a pair of shortest vectors t1, t2 applied to a minimum texel. This

results in a partitioning of the texture into like elements that simultaneously produce

a covering (no gaps) and a packing (no overlaps). According to wallpaper group

theory, these generating vectors form a 2D quadrilateral lattice with 5 possible

lattice shapes [24]. While a single pair of of t1, t2 vectors uniquely describe a regular

texture, the translation vectors of an NRT is location dependent and described by

t1(x, y), t2(x, y) [66]. Despite these local and global variations, the lattice topology

90

Figure 5.3: Suburban homes may not have dominant grid structures. We do not
handle these in this work.

in an NRT still remains the same – i.e., quadrilateral.

Our motivation for modeling building facades as NRTs is to exploit the com-

monly occurring grid topology of windows. If such a pattern exists and can be

discovered, it could allow us to identify anomalies such as occlusions and variation

within windows. However, none but the most regular urban structures (top row of

Fig. 5.2) would be classified as NRTs, as they’ve been defined above. The conditions

of packing and covering restrict windows to appear right next to each other with

no stochastic variations between them. This is not always true on building facades.

The urban scene domain allows us to benefit from certain assumptions about the

kind of texture we are looking for. First, we assume that the tiles (e.g. windows,

bricks) are rectangular. Secondly, neighboring tiles of the lattice structure may be

disconnected in the image, as long as they satisfy global appearance and topological

constraints. These will be defined later.

It is important to note that the analogy is not valid in all cases. In particular,

suburban homes (Fig. 5.3) often do not contain repetitive structures that dominate

the building facade. These scenarios call for other context based scene analysis built

91

on object recognition and visual category classification. In Section 1.3, we catego-

rized this function as belonging to the Training and Recognition components of the

Semantic Module. Very often, these systems depend on the generalization capability

of learning algorithms from a small set of examples. Choosing the wrong training

set can have dire consequences. In contrast, a rule such as “Identify Grid Struc-

tures” imposes less constraints and is widely applicable in most city and campus

environments.

5.1.1 Texture Discovery: Related Work

A robust texture segmentation procedure is a necessary first step for back-

ground reconstruction. Texture discovery and segmentation are long-studied prob-

lems [109, 58]. One method by Leung and Malik [96] relies on looking for distinctive

elements in the image and searching in its neighborhood for similar structures (rep-

etitions). Regions with high matches are grouped together greedily without regard

to the global structure. This “spatial tracking” approach has also been adopted for

NRT lattice initialization by [144, 100]. Here, a user-selected texel is correlated with

its neighborhood and the peaks of the correlation surface become candidates for ad-

dition to the lattice. The lattice construction proceeds in a greedy manner along the

two principal translation directions of the NRT. None of these algorithms enforce

global constraints on the structure. Without backtracking, incorrect assignments

cannot be altered with new evidence about the pattern.

Rather than placing strong requirements on the appearance of each texel,

other approaches assume that the texture is completely regular and can be ex-

actly modeled by a parameterized transformation. Schaffalitzky and Zisserman [137]

group repetitions of lines and rectangles to build a high-level feature that could be

used for matching or shape recovery. Their RANSAC approach to finding repeated

elements related by an elation [64] (translations on a plane) is shown to be effective

in man-made scenes. Turina et al. [162] use the cascaded Hough transform to group

92

(a) (b)

Figure 5.4: Comparison of the resulting lattice discovered by (a) Hays et. al [66]
and (b) our algorithm.

regular repetitions under all kinds of homologies. Being geared towards planar pat-

terns under perspective, these approaches [137, 162] seem appropriate for grouping

windows on building facades. However, many buildings in our test set do not ex-

hibit such “checkerboard” style consistency. Independent variations in the size or

location of windows cannot be modeled well by a single global transformation. A

near regular texture with locally smooth geometric and appearance deformations

seems more apt.

An algorithm for NRT discovery by lattice growth was described by Hays et

al. [66]. They use more relaxed appearance and geometric constraints, but impose

a global lattice structure on the texture. Lattice finding is formulated as a higher-

order correspondence problem where neighbor relationships are established among a

set of potential texels, with constraints on smoothness, self-assignments and so on.

A bottom-up process extracts candidate texels which then have optimal neighbors

assigned in the two principal directions. This lattice assignment is performed by

a spectral technique [95] that optimizes affinities between all pairs of texels and

edges. Since NRTs may be arbitrarily deformed, the above steps are repeated in an

iterative framework to regularize and grow the current lattice.

93

Such region-growing techniques can occasionally be stymied by the presence

of foreground objects in some tiles, preventing proper matching with their unoc-

cluded neighbors. Although the method in [66] worked well on many images we

tested, it did not find the entire textured region when blocked by significant occlu-

sions. Besides being computationally expensive (averaging over half an hour per

image on an Intel Core2 Extreme X6800), discovered tiles do not correspond ex-

actly to semantically meaningful units. As Figure 5.4 shows, while the scale is often

correct, there is an arbitrary shift that requires post-processing to center on the

windows. In comparison, our algorithm returns the window boundaries as well as

the neighborhood graph.

Bayesian approaches have also been applied for localizing grid structures.

Markov Random Fields [98] have been used in microarray analysis [62, 20], where

a global grid template is matched to a grid structure undergoing both global and

local deviations of the nodes. However, it assumes that prior models of appearance

exist and the deformation is purely Gaussian. An initial rough grid is placed on the

structure followed by simulated annealing to maximize the posterior distribution

of the grid nodes. Since they are targeting applications in genome sequencing,

it is unclear how one would determine the initial grid for arbitrary NRTs. The

extent of grid deformation is limited by their use of a global template. Lin and

Liu [101] also define an MRF model for tracking dynamic deformable NRT lattices.

By enforcing the topological invariance property of NRTs, they were able to show

superior performance against previous tracking algorithms.

5.2 Spectral Analysis for Brick Patterns

Our baseline texture analysis method is a power spectrum approach [109]

that although simple works well on a variety of brick images. Absolute horizontal

and vertical gradients ∂I
∂x

and ∂I
∂y

are computed and averaged in the first case down

columns to obtain a column edge strength function C(x) and in the second across

94

rows to get a row edge strength function R(y). A 1-D discrete Fourier transform

is applied to each function and a mean-square power spectrum or periodogram is

then constructed. The dominant vertical and horizontal periods are inferred from the

highest-power frequencies; these are the estimated average brick height h and half of

the width w (because of the running bond pattern). An origin is found by choosing

the horizontal shift −w/2 ≤ ∆x ≤ w/2 and vertical shift −h/2 ≤ ∆y ≤ h/2

which best align the predicted grid with C(x) and R(y), respectively. Brick rows

often do not line up perfectly, so a last adjustment allows individual rows to shift

independently to optimize registration.

As some have noted [58], this approach is prone to failure on scenes containing

more than one large region of texture, but it is extremely efficient for images with

a large number of tiles.

5.3 Grouping Lattice Structures

As a more general method, we define a lattice-based Markov Random Field

(MRF) [98] to model the window grid in particular and NRTs in general. The

reviewed literature suggests that an effective methodology for grouping should com-

bine the region growing techniques of [96] with the global topological restrictions of

[137], while allowing smooth fluctuations from the perfect grid. This is indeed the

approach used by Hays [66]. However, we wish to reduce some of the excessive time

and space complexity of their algorithms, especially since the grouping is performed

on hundreds of candidate tokens from the image.

This section describes our Markov Chain Monte Carlo (MCMC) [9, 117] algo-

rithm to extract grid structures from the image. First, we enumerate various image

discretization methods to identify potential texel elements. A Bayesian formulation

that captures the likelihood of grid structures in the image is defined. A novel MRF

prior that models the lattice topology is then described. This is followed by de-

tails of the optimization to arrive at a MAP estimate by dynamically adding and

95

removing edges from the MRF.

5.3.1 Image Tokenizing

Many texture processing and segmentation algorithms [135] use the pixel-grid

as the underlying image representation. A more natural alternative for grouping

high-level features would be to work with the perceptually distinctive entities in the

image. Similar to the lexical analysis phase of a compiler, the image is preprocessed

to demarcate potential texels. The nature of the texture should dictate the particular

method used, as our grouping algorithm works independently. Previous algorithms

for texture discovery [96, 137, 162] have used interest point or corner detectors.

Hays [66] uses MSER features [108] to propose initial texels, following which peaks

of a correlation map are used. While general, these features often do not correspond

to visually semantic entities in the image. Since we are interested in rectangular

shaped windows, a method to generate independent rectangle proposals from the

input image is used.

Hypothesizing Rectangles

The first stage consists of finding as many straight lines as possible. Canny

edge detection is applied to locate high gradient pixels in the image. Similar to the

technique of Zhang and Kosecka [179], the orientation of each edge pixel is quantized

into 8 bins. However, instead of computing the gradient direction from the Sobel

operator, we convolve the image with filters from the RFS filterbank [165] at 8

orientations and a single scale. Each pixel is assigned to the bin of the filter that

had the maximal response. This technique was found to be more robust to noise,

especially in the presence of occlusions or weak edges. Adjacent edge pixels in the

same orientation bin are grouped together using connected components to obtain

a number of straight lines from the image. For efficiency, we retain only lines that

had more than 15 pixels (approximately 2% of image dimensions) grouped together.

96

Each connected component is parameterized as a line by its centroid, slope and

magnitude. This is computed using weighted least squares fitting.

If the image has been rectified, rectangular structures may be represented

by just 4 parameters – upper-left corner pk, width wk and height hk for rectangle

k. Rectangles under perspective could be parameterized by its vanishing points as

used by Han [59], but this would imply that any errors in the initial vanishing point

estimation would cascade through to the ensuing stages. Therefore we simply define

them as (p0
k, p

1
k, p

2
k, p

3
k) denoting the 4 corners of a quadrilateral in anti-clockwise

order with pk1 as the upper-left position. A discriminative bottom-up approach

for rectangle finding has been mentioned by [179]. In that work, rectangles are

hypothesized from two pairs of lines, each of which is picked from two different

vanishing directions. The validity of the hypotheses is verified by looking for corner

features in the image. Since ours is a top-down approach that takes high-level

topological constraints into account, we can afford to be more conservative about

which rectangles pass through to the next stage [59].

To generate possible rectangles from the perspective image, pairs of line seg-

ments (li, lj) are exhaustively drawn and tested. Compared to [179] and [59] which

need all 4 lines, the sufficiency of line pairs makes our algorithm less sensitive to

broken edges in the edge detection. The endpoints of liand ljform the corners of a

quadrilateral with interior angles θl : l ∈ 0, .., 3. The test for parallelism and mag-

nitude requires that max(| cos(θl)|) be less than a threshold τθ. We choose τθ = 0.1

for rectified images and relax the constraint for perspective with a value of 0.3. If

the lines qualify, the four corner points may be refined by the presence of actual

image edges before being added as a rectangle hypothesis. Except for extremely

oblique views of buildings, we have found this simple criterion effective. Additional

constraints such as aspect ratio could also guide the hypotheses generation.

This process results in a couple of thousand rectangles for a typical image.

97

(a) (b)

(c) (d)

Figure 5.5: Line detection and rectangle hypotheses. (a) Input image; (b) Straight
lines obtained by grouping Canny edge pixels; (c) 1291 hypothesized
rectangles from all pairs of approximately parallel lines; (d) 700 rect-
angles after pruning based on mean gradient strength at the borders.

Some amount of pruning can be done by sorting the rectangles based on mean

gradient strength along its boundaries and removing ones that are not well aligned

with the edges. We conservatively keep the top 700 such rectangles (the average

number of windows in our images is 15-20). By overestimating this number, the

grouping algorithm is allowed to recover the best possible lattice without using hard

thresholds early in the pipeline. Figures 5.5(b) and 5.5(c) show fitted straight lines

and hypothesized rectangles for an input image. These rectangles are then passed

to our lattice discovery algorithm described below.

98

Figure 5.6: Three typical graphs supporting MRF-based models for image analysis
(from Perez [122]): (a) rectangular lattice with first-order neighbor-
hood system; (b) non-regular planar graph associated to an image
partition; (c) quad-tree. For each graph, the grey nodes are the neigh-
bors of the white one.

5.3.2 MRF Grid Extraction

A Markov Random Field (MRF) is an undirected graph (V, E), where V and

E denote the set of vertexes and edges in the graph, respectively. Each vertex in

the graph corresponds to a random variable. The joint probability of all random

variables is factored as a product of local potential functions at each node, and the

interactions between nodes are defined on neighborhood cliques represented by the

connected edges in the graph. The most common form of MRF is a pairwise MRF

in which each clique is a pair of connected nodes in the undirected graph. MRFs

have been extensively used in pixel labeling problems like segmentation, matting,

stereo, super-resolution and so on. Figure 5.6 shows typical MRF neighborhood

configurations used in image analysis [122].

Given the set of tokens vi ∈ V , we construct a pairwise MRF G = (V, E).

Each token is a random variable that constitutes a node of the undirected graph G,

with edges eij ∈ E representing the dependency between vi and vj. Statistically,

the probability of the states of a texton in an NRT is only locally dependent – the

position and appearance of a texton is influenced more by its neighbors than distant

textons. The MRF model can naturally embed the global lattice structure while

99

(a) (b)

Figure 5.7: MRF (a) local node and (b) clique potential “neighbor” vectors

preserving this Markov property. Lin and Liu [101] exploit it for tracking dynamic

NRTs even under significant self-occlusion and deformation. Their objective is to

preserve an initial lattice topology over time as the NRT moves and deforms. In

contrast, our goal is to build up the initial grid by grouping together image tokens

that best fit the grid model.

The solution involves gradually evolving the lattice configuration by itera-

tively adding and removing edges. At the end of the process, links are created along

vectors to
i : o ∈ {r, l, u, d} to the most likely right, left, up and down neighbors of vi

(Fig. 5.7) without violating grid constraints. Similarly, vo
i : o ∈ {r, l, u, d,NULL}

denote its neighbors, if any, in each direction. For object segmentation, Barbu et

al. [11] and Wang et al. [167] describe a Bayesian approach to grouping adjacent

“superpixels” [133] using prior models of appearance and shape. In addition to these

local priors, we also need to define a global topology prior while constructing the

lattice. Since connected nodes do not have to be adjacent in the image (according

100

to our relaxed constraints), each node can also potentially be linked to several other

nodes, increasing the combinatorics of the problem.

Given image I, we wish to obtain the MAP estimate for the graph configuration

p(G|I, T, S) ∝ p(I|T, S, G) p(S|G)p(T |G) p(G). (5.1)

The image likelihood p(I|T, S, G) is encapsulated in the rectangle detection and is

neglected here. Color histograms, proximity of rectangle boundaries to image edges,

or learned appearance models are all possible likelihood models. The shape prior

p(S|G) can be used to favor known shape models, though here we set it to unity

since we are only dealing with rectangles. The graph prior p(G) models any global

intuition about the nature of the grid or the degree of connectedness. We set this

also to unity for the building images.

The topology prior P (T |G) is represented as a pairwise MRF whose joint can

be factored into a product of local node potentials Φ and clique potentials Ψ:

P (T |G) ∝
∏
i

Φ(vi)
∏

i,j∈E

Ψ(vi, vj).

To model a grid, we measure the symmetry of direction vectors from a node to its

neighbors. Let δ(t1, t2) = e−β||t1−t2|| be a similarity measure between two neighbor

vectors assuming both edges are in G. The potentials are now defined as:

Φ(vi) = e−γ(4−ni) ∗ δ(tr
i ,−tl

i) ∗ δ(tu
i ,−td

i), (5.2)

Ψ(vi, vj) = δ(tu
i , t

u
j) ∗ δ(td

i , t
d
j) ∗ B(vi, vj). (5.3)

where ni denotes the degree of node vi. Thus we encourage left/right and up/down

edge pairs to be 180 degrees apart with similar magnitudes. The interaction po-

tential between horizontal neighbors forces their vertical edges to be approximately

parallel. For missing edges, a small fixed value of 0.2 is assigned to δ. These simple

functions effectively model the lattice configuration as will be shown on the synthetic

NRT images.

101

Figure 5.8: Illustration of windows under perspective and notation.

The function B(vi, vj) is used to specify any texture-specific pair-wise rela-

tionships between the texels. For building images and windows under perspective,

we incorporate constraints such as overlap, cross ratio, and appearance similarity.

Let g(x, σ) = exp(−x2

2∗σ2) be a Gaussian weighting function with standard deviation

σ. Using Fig. 5.8 to illustrate, we list various heuristics that reflect the probability

of vi and vj being connected by a horizontal edge. The case of vertical neighbors is

analogous.

• Windows on the same level have their bottom and top edges aligned with each

other, implying that points (p0
i , p

3
i , p

0
j , p

3
j) and (p1

i , p
2
i , p

1
j , p

2
j) are collinear. We

measure the extent of deviation from this constraint with a commonly used

102

test for collinearity of 3 points. Let ci = (xi, yi) : i = {0, 1, 2} be three points.

If they are collinear, the area A(c0, c1, c2) of the resulting triangle should be

close to 0. This is computed as

A(c0, c1, c2) =

∣∣∣∣∣∣∣∣∣∣∣
x0 y0 1

x1 y1 1

x2 y2 1

∣∣∣∣∣∣∣∣∣∣∣
.

We then define a likelihood measure penalizing deviations from collinearity as

Bcol = g(COL, 4),

where

COL = A(p0
i , p

3
i , p

0
j) + A(p0

i , p
3
i , p

3
j) + A(p1

i , p
2
i , p

1
j) + A(p1

i , p
2
i , p

2
j).

• One projective invariant is the cross ratio. Given 4 points xi, the cross ratio

is defined as

Cross(x0, x1, x2, x3) =
|x0, x1||x2, x3|
|x0, x2||x1, x4|

where

|xi, xj| =

∣∣∣∣∣∣∣
xi1 xj1

xi2 xj2

∣∣∣∣∣∣∣ .
Assuming parallel window sides and negligible noise, the 4 upper and lower

points in Fig. 5.8 should have approximately the same cross ratio. We define

CR =

∣∣∣∣∣1.0− Cross(p0
i , p

3
i , p

0
j , p

3
j)

Cross(p1
i , p

2
i , p

1
j , p

2
j)

∣∣∣∣∣
to quantify this measure, and set BCR = g(CR, 0.1). For horizontal neighbors,

this essentially measures how parallel the vertical edges of the windows are.

• The horizontal dimensions of windows under perspective should also vary

smoothly. To penalize deviations in magnitude and orientation among the

upper and lower sides, we define

BDH = min(δ(vtop
i , vtop

j), δ(vbot
i , vbot

j)).

103

The term vtop
i denotes the line segment p0

i p
3
i . Similarly, vbot

i = p1
i p

2
i , vtop

j = p0
jp

3
j ,

and vbot
j = p1

jp
2
j .

• Windows and texels in general should not overlap. To test if two connected

polygons overlap, we can determine the intersections of its edges with the

other. Thus

Bovl(vi, vj) =

 10−20 if vi and vj overlap;

1 otherwise.

• The corners of each polygon are correlated with each other to ensure appear-

ance similarity. Correlating the entire window would be sensitive to occlusions

and pose variations, while the corners are typically more distinctive. Formally,

XC(vi, vj) =
3∑

k=0

NCorr(Patch(pk
i), Patch(pk

j))

4

where XC is the mean normalized cross correlation NCorr of 11× 11 patches

centered at each of the 4 window corners. This is converted into a likelihood

BXC(vi, vj) = g(1.0−XC(vi, vj), 0.4).

These heuristics for perspective windows are combined together as

B(vi, vj) = Bcol(vi, vj)× BCR(vi, vj)× BDH(vi, vj)× Bovl(vi, vj)× BXC(vi, vj)

and used in conjunction with the generic lattice potentials defined in (5.2) and (5.3).

MCMC Optimization

We use a Markov Chain Monte Carlo (MCMC) framework to iteratively max-

imize the posterior defined in (5.1), probabilistically adding and removing edges from

the graph in a fashion similar to the multi-target tracking method of [79]. A Markov

chain is defined over the space of configurations {G}, such that the stationary dis-

tribution of the chain approximates the posterior. The target configuration is one

where all NRT nodes are connected in a lattice structure, while the other elements

104

remain isolated. We use the Metropolis-Hastings [65] algorithm to generate the

chain or sequence of samples. Starting from an initial configuration G0, we repeat

for t = 1..N :

1. Given current state Gt, generate a new proposed state G′
t from the proposal

density Q(G′
t|Gt).

2. Compute the acceptance ratio

u =
p(G′

t|I, T, S)Q(Gt|G′
t)

p(Gt|I, T, S)Q(G′
t|Gt)

).

3. Accept this new state with probability p = min(1.0, u) setting Gt+1 = G′
t, and

reject otherwise. In the latter case, set new state Gt+1 = Gt.

The first b iterations constitute the burn-in period and are discarded when selecting

the best MAP estimate.

Proposal updates Q(G′
t|Gt) consist of edge additions or removals applied to

a node vk. Modifying edges one component at a time leads to better success rate

for transitions, although large state changes require more jumps. The transitions

are made only in the up and right directions in order to keep the reverse transition

probability simple. To maintain consistency, the edges in the reverse directions are

also modified appropriately. Two functions, picked probabilistically, govern how

vk is selected in each MCMC iteration: (i) an unguided scheme Q1 in which vk

is chosen uniformly from all nodes, and (ii) a guided hypothesis generation Q2 in

which the node and a corresponding neighbor is selected from a dynamic pool Pq of

potentially good edges. As the grid converges to the correct solution, Q2 facilitates

lattice growth and completion by hypothesizing edges close to the good parts of the

lattice.

Let eo
kl : l ∈ {1, . . . , nk} be potential edges from vk to its neighbors in direction

o. In Q1 , o is uniformly chosen from the up and right directions. The edge to
k from

105

(a) (b) (c)

Figure 5.9: Example of our algorithm on two synthetic NRT images from [91].
(a) Column shows a color map of Escore for a selected node (white
rectangle). This is the sampling distribution for making proposals
from this node. (b) Initial lattice G0 obtained by connecting each
node to the neighbor with highest Escore. (c) The best MAP estimate
after running 10000 MCMC iterations; lattice nodes are grouped into
a single connected component of the graph.

node vk is turned off with fixed probability poff or assigned a neighbor by sampling

from

Escore(k, ·) =
votes(k, ·)√
dist(k, ·) + ε

∗ B(vk, ·). (5.4)

Here dist(·, ·) is the point-to-point distance between two nodes, and votes(·, ·) is

measured as the total number of other nodes within a threshold distance of the line

parameterized by the two nodes. Fig. 5.9 illustrates this function for two synthetic

images from the NRT database. The first column shows the color coded mapping of

106

(5.4) for a specific node (denoted by the white rectangle) to all its neighbors. This

is the sampling distribution used by Q1 to hypothesize neighbors in a given MCMC

step. Neighbors that seem to conform to the topological and visual constraints are

picked more often, leading to faster convergence.

Random selection of a candidate node is effective given enough iterations,

but can be inefficient in steering the optimization towards completing the lattice;

missing or incorrect edges adjacent to the good regions should receive higher priority

for growth. When a node vk is visited inQ1 , its unbalanced edges are first identified.

Let m be the missing edge direction and OPP (m) be its reverse. Since node vk is

connected to a lattice through t
OPP (m)
k , its opposite vector could be a useful cue

to propose a new neighbor vm
k in direction m. The algorithm iterates through all

neighbors l in em
kl, weighting it by its deviation from t

OPP (m)
k and shape similarity.

A new edge em
kl′ is sampled by picking l′ according to distribution

Wkl = δ(−t
OPP (m)
k , vk − vl) ∗ B(vk, vl).

The sampled edge em
kl′ is added to priority queue Pq with ranking function

Wkl′ . As the number of iterations increase, this pool of potentially good edges also

grows. A new proposal in Q2 simply involves removing the highest priority edge

from Pq and adding it as an edge in state G′
t. Our experiments have also suggested

that interleaving proposals Q1 and Q2 in this manner is superior to running either

one alone. The reverse transition probability is simple in both cases, as the sampling

distributions are constant and can be computed beforehand. The chain is irreducible

because a series of edge additions and deletions can take the graph from one state to

any other state. The stochastic elements also guarantee aperiodicity by not getting

trapped in cycles. Together, they satisfy the conditions of ergodicity to ensure that

the chain will converge to the stationary distribution.

107

(a) (b) (c)

Figure 5.10: NRT Discovery Tokenization: (a) User selected patch in blue; (b)
Height map after normalized cross correlation of patch; (c) Resulting
peaks after regions-of-dominance computation using Matlab code of
[66].

Lattice Initialization

To speed up convergence, the graph G0 is initialized with a maximum like-

lihood (ML) estimate where each node vk connects to its most likely 4 neighbors

according to Escore(k, ·) (5.4). Under negligible noise and mostly rigid deformations,

this may recover the full lattice structure. In other cases with smooth but non-rigid

deformations, the heuristic is only locally valid. Other distractor elements not part

of the lattice can also cause inconsistencies in the lattice structure. Nevertheless, it

provides a useful starting point for the MCMC simulation. The second column of

Fig. 5.9 shows the initialized ML lattice and the third column shows the best lattice

after the MCMC optimization.

5.4 Discovering pure NRTs

Since this work is primarily about buildings and specifically for window grids,

all the above discussion has focused on identifying rectangular NRTs. However,

108

unlike other techniques developed for urban scenes [110, 115], we demonstrate that

our grouping algorithm is general enough to work on pure Near-Regular Textures

such as those shown in Fig. 5.1 from the NRT database [91]. The key to enabling

this is building a new tokenizer that can extract out like elements. Hays [66] uses

an iterative procedure where the grouping is first performed on MSER features,

failing which random patches are correlated in the image to build a height map and

extract regions of dominance [104]. Since their Matlab code was available to us, we

used their identical functions to detect correlation peaks for a user-selected patch

from the texture image. This interaction only involves selecting a bounding box

and eliminates some of the spurious lattices discovered by using randomly selected

patches. Figure 5.10 shows the steps of this image discretization procedure. For

images where MSER gave a reasonably good initialization, we used those point

features only.

MCMC grouping is then performed by considering the dominant peaks (or

MSER features) as tokens, and consequently nodes of the graph. Similar to the

process of inferring the lattice topology for the synthetic images (see Results sec-

tion), the goal is to connect these peaks into a 4-neighborhood lattice. Currently,

the grouping is done purely by topology as the texture-specific B(vi, vj) function

for dots is set to unity. However, even without a well-defined function that con-

siders appearance similarity between neighbors when hypothesizing edges, we show

encouraging results for lattice discovery.

5.5 Results

This section presents results of the grouping algorithm on both synthetic

and real images from the NRT database as well as building images from our test

set. 10000 MCMC iterations were used with the first b = 1000 iterations being the

burn-in period. The best MAP estimate is chosen from the remaining samples. A

breadth-first traversal is used to separate out the various connected components of

109

the graph configuration. A component with more than 4 elements is considered a

lattice. A user can then iterate through the handful of such lattices to pick the best

one, or the selection can be done automatically. In the latter case, heuristics such as

alignment with edges or any a priori knowledge may be used. For building images,

we use edge alignment to rank each connected component.

Despite using very simple potentials, we are able to model many rigid and

non-rigid grid configurations—e.g., the test set dots images in the PSU NRT database

[91]. While this work is primarily focused on rectangles and structured scenes, we

demonstrate that the grouping framework is general enough to handle various types

of NRTs with the appropriate bottom-up techniques. The algorithm of [66] repeats

over 5 times with random initializations, each run consisting of 16 iterations of lat-

tice refinement and unwarping. The final best lattice is chosen according to some

heuristics. We argue that MCMC provides a more natural means of embedding

such an iterative framework, without committing to a single best lattice. Instead,

we obtain a probability density over the space of all topologies. Our local pairwise

MRF potentials are also more space efficient when compared to the N4 complexity

of [66], where N is the potential number of texels.

Arguably, more robust than taking the MAP estimate would be to determine

the mode of the sample distribution. This would require maintaining a histogram

counter for every possible state. With hundreds of elements, each potentially con-

necting to tens of other elements, the state space is huge. A histogram in this space

that needs to be updated every iteration can therefore be very inefficient. The slow-

est part of our algorithm is in computing Escores and B(vi, vj) before running the

MCMC simulation. The current unoptimized implementation is an O(n2) operation

and takes 20.8 seconds for 440 nodes (rectangles) on a 1.7 GHz Pentium M laptop.

Once precomputed, running 10000 MCMC iterations takes only a couple of seconds

on the same platform.

110

5.5.1 Building Images

Figures 5.11 to 5.18 demonstrate the results of running our algorithm on

building images collected from the campus as well as other urban environments.

The images are characterized by occlusions, shading effects, reflections, and vari-

ation within windows; purely appearance-based systems can be sensitive to these

effects. A fixed value of β was used for all experiments. Both windows as well as its

topological structure in the form of a neighborhood graph has been captured.

Firstly, figures 5.11, 5.12, and 5.13 compare the result of our MCMC-based

grid finder with the algorithm of Hays [66]. One of the main disadvantages of [66]

is efficiency. Generating the results for each image (at 800x600 resolution) took

approximately 10 minutes. In contrast, our method takes less than a minute in

total. For example, the timings for fig. 5.11 are:

• Rectangle hypotheses - 20.2 sec (in Matlab)

• Initial graph construction - 15.9 sec (C++)

• MCMC Grouping with 10000 iterations - 1.9 sec (C++).

Rectangle hypotheses can be speeded up by porting to C++ while the main bot-

tleneck in the graph construction is due to exhaustive searching among nodes for

nearest neighbors. Approximate matching techniques such as [78] should be able to

speed this process significantly. The method of [66] also suffers from the lack of cen-

tering on windows or other semantically meaningful aspects of the image. Finally,

after repeated iterations, the lattice that it eventually picks is not perceptually the

best. For the comparisons, the images were handpicked based on what we thought

was the best. The algorithm’s best results are shown in 5.14 and seems to favor

more tiles and hence more of them.

By only enforcing local smoothness in appearance and geometry, the grouping

is robust to changes in window dimensions (such as those on the first floor). Along

111

with the heuristics that constitute B, it effectively handles perspective images shown

here. Another advantage is that the algorithm is not dependent on the quality

of low-level operations like image rectification or vanishing point detection as a

preprocessing step.

5.5.2 NRT Database Images

Figures 5.20 to 5.27 show the inferred lattice configuration for several images

from the NRT database [91]. The two figures in 5.20 were tokenized using MSER

features as they seem to give a good initialization (shown in Fig. 5.19). For the

other images, a template patch was selected by hand and correlated with the rest

of the image.

The synthetic dots images in figures 5.28 and 5.29 give perfect initialization.

We simply use thresholding followed by connected components to extract out each

candidate node. This allows us to decouple the grouping aspect of this work and

test it under various scenarios: rigid and non-rigid deformations, distractor elements,

noise, and missing nodes. The discovered lattices for various synthetic images are

also shown.

The only difference between the window grid extractor and the more general

NRT discovery method here is the texture-specific B function – something that

can be plugged into the framework easily without incurring excessive overhead in

programmer effort and execution time. The results demonstrate that our MRF

formulation of the lattice is powerful. With tokenization using normalized cross-

correlation and Regions-of-Dominance, it was able to discover the connectivity well

in many of the images from [91]. Using a suitable B function could for example

have prevented some of the boundary pears from connecting to the different colored

fruits next to it, or the fabric texel in Fig. 5.22 from connecting to an outlier token.

Discretizing the image using cross-correlation seems general enough to work

on the structured building facade of Fig. 5.24 as well as the more cluttered pears

112

(a)

(b)

Figure 5.11: Comparison of (a) our window grid discovery method with (b) the
lattice discovery of Hays [66]

113

(a)

(b)

Figure 5.12: Comparison of (a) our window grid discovery method with (b) the
lattice discovery of Hays [66]

114

(a)

(b)

Figure 5.13: Comparison of (a) our window grid discovery method with (b) the
lattice discovery of Hays [66]

115

Figure 5.14: The best lattices picked by [66] after several iterations. The algorithm
seems to favor smaller tiles and more of them in number.

116

Figure 5.15: More results of lattice discovery on various building facades.

117

Figure 5.16: More results of lattice discovery on various building facades

118

Figure 5.17: More results of lattice discovery on various building facades

119

Figure 5.18: More results of lattice discovery on various building facades

120

image in Fig. 5.21. However, there are a couple of disadvantages in the way we use

it here. Firstly, correlating patches can localize the texel centroid well, but not the

semantic extent of it (unless the image is rectified in which case the user-selected

patch can be translated to each of the centroids). When the NRT assumption of

packing and coverage are violated, such as in the building images, it is difficult to

reason about window boundaries or occluding elements between them. This was

our main motivation for using the rectangle tokenizer for buildings.

Correlation is also not as effective on images undergoing significant distortion

– either perspective or non-rigid. Thus it misses the border elements in the glass

beads image of 5.26(bottom). In Fig. 5.22 also, correlation does not produce a peak

of sufficient strength when the fabric is folded, thus missing out some of the interior

texels. Missing tokens after initialization are indeed a drawback of our current

algorithm as we mention in Future Work. One means of mitigating this is to allow

both edges and new tokens to be added during an MCMC proposal. This would

require us to use Reversible Jump MCMC methods [56]. Another alternative might

be to iteratively run the grouping algorithm, where the current lattice is used to

discover new tokens for the next iteration. This is quite feasible because the grouper

itself requires very little run-time. Each of the result images took less than a minute

to generate (initialization to grouping), compared to [66] which claims to take 30

minutes on average to discover the best lattice for each image in the NRT database.

5.6 Summary

We draw the analogy that building facades are often examples of Near-

Regular Textures (NRT) [66], and discovering these textures could provide valu-

able insight into the rest of the facade. After defining NRTs and reviewing texture

discovery methods, we elucidate a novel Markov Chain Monte Carlo (MCMC) ap-

proach to discover grid patterns from images. A Markov Random Field (MRF) that

models spatial interactions between nearby texels for NRTs is defined; entities in the

121

Figure 5.19: MSER features (shown as red or blue circles) detected for two images.

122

Figure 5.20: MCMC grouping on tokens extracted from MSER feature detector.

123

Figure 5.21: MCMC grouping on tokens extracted using Regions-of-Dominance.
The user selected patch is the same as that shown in Fig. 5.10.

124

Figure 5.22: MCMC grouping on tokens extracted using Regions-of-Dominance.

image are grouped together based on its adherence to this model. These entities are

rectangles – very prevalent on building facades – hypothesized from straight lines

in the image, though other image discretization functions may be used depending

on the nature of the data. Our Bayesian framework then integrates appearance,

shape, and topology constraints during grouping. The texture-specific interaction

potentials we use for buildings under perspective are then defined. The Metropolis-

Hastings algorithm with a customized proposal density is used to generate the chain

or sequence of samples that approximate the posterior. Results are shown on both

synthetic as well as real building images.

125

Figure 5.23: MCMC grouping on tokens extracted using Regions-of-Dominance.

126

Figure 5.24: MCMC grouping on tokens extracted using Regions-of-Dominance.

127

Figure 5.25: MCMC grouping on tokens extracted using Regions-of-Dominance.

128

Figure 5.26: MCMC grouping on tokens extracted using Regions-of-Dominance.

129

Figure 5.27: MCMC grouping on tokens extracted using Regions-of-Dominance.

130

Figure 5.28: Discovered lattices from synthetic NRT images.

131

Figure 5.29: Discovered lattices from synthetic NRT images.

132

Chapter 6

EXTRACTING SEMANTIC DESCRIPTIONS OF

BUILDING IMAGES

The previous chapter introduced an algorithm to discover the window lattice

from images of building facades. We now address the task of extracting other se-

mantic properties. In addition to window localization, the discovered grid provides

vital cues about positioning, layout, and scale. These parameters may enable facade

synthesis or enhancement. In chapter 4, we used motion to extract out candidate

patches for various layers and learn appearance models. Could the window lattice

be leveraged to extract training patches for generalization? What assumptions and

heuristics would be applicable? A common thread that weaves together the tech-

niques described here is the goal of automatically detecting and removing foreground

elements from the image.

Building upon the techniques for discovering and parameterizing building

window and brick textures, this chapter attempts to semantically explain images of

buildings. The components covered in the following sections are:

• Recovering parameters of the grid such as window dimensions and grid spacing

to possibly identify occluded windows.

• Semantically describing the inside of window texture elements by inferring the

rules of a split grammar that might have generated it.

133

• Automatically learning Gaussian color models of building and window ele-

ments for building segmentation.

• Identifying outliers at a per-pixel level with a robust measure of spread.

• Reconstructing partially and fully occluded tiles to obtain a “scrubbed” image.

To ease the processing, all the above methods assume that the input image is

rectified. One approach might be to leverage the discovered window lattice to com-

pute the rectifying transformation. We have simply assumed that building scenes

contain several parallel lines in two orthogonal directions, facilitating automatic

rectification.

6.1 Lattice Completion

Occlusions or errors in the rectangle detection step might cause missing nodes

in the lattice. The already grouped elements facilitates parameter inference of the

regular grid. The median height, width, and magnitudes of the horizontal and ver-

tical t vectors are computed first. We then pick the node with the highest likelihood

according to (5.1) as an origin. This completely specifies a regular grid that can be

overlaid on the image to hypothesize missing or occluded lattice elements.

This approach is not as accurate if the actual windows deviate from the

perfect grid assumption. For instance, windows on the ground floor have slightly

different dimensions. However, we observed that windows on the same floor are

similar and are centered horizontally and vertically with its neighbors. As explained

in the previous paragraph, the parameters describing a regular grid (and which best

approximates the discovered lattice) are first computed. Then for every window

location, we test whether an actual window was detected in the grouping stage or

not. If so, that window is drawn according to its parameters. Otherwise, a missing

grid element is inferred at the location aligned horizontally and vertically with its

neighbors. The size is set to be the same as that of its horizontal neighbor.

134

(a) (b)

(c) (d)

Figure 6.1: Discovered grid shown as blue rectangles on a variety of images. Im-
ages were automatically rectified as a pre-processing step. Rectangles
plotted in red are occluded or missing windows inferred from the result
of grouping.

Figure 6.1 shows examples where the discovered grid (drawn in blue) is used

to identify missing or occluded grid elements (drawn in red). The images in the

top row are highly regular and can be fully described by a single set of global

parameters. Predicting the location of occluded windows in figures 6.1 (c) and (d)

however required the more adaptive approach that accounts for systematic variations

in window dimension. Attempting to describe the grid with just a few parameters

obviously works only with very regular structures. Nevertheless, even when the

window spacing is not systematic, these grid parameters can provide a good initial

135

Figure 6.2: The parameters can be used for an initial guess about window locations
even when the spacing is very irregular.

guess about the location of the windows. The example of inferred windows on the

highly occluded and geometrically irregular building of 6.2 demonstrates this.

6.2 Split Grammars for Parsing Window Interiors

The windows detected by our algorithm can exhibit large variations across

buildings. Inspired by the work of Alegre and Dellaert [6], we model the inside

of windows by a set of hierarchical partitions generated by rules of a context free

grammar. While [6] tried to semantically partition the entire building facade, we feel

that the inside of the windows are more amenable to grammar-based inference. Their

approach would take an input grammar specified by the user and find the attributes

associated with each production rule. We propose to infer both the rules and the

attributes, taking as input only the number of regions to partition the window into.

136

To a user, this is much more intuitive and it circumvents the ambiguity of how fine-

grained the resulting parse tree needs to be. We feel that such semantic inference

can have various benefits from determining building style to explaining variations

among the windows of a building.

Split grammars were introduced by [173] to describe architectural shapes for

procedural modeling. Each production of the grammar corresponds to the decom-

position of a basic shape into another shape with derived attributes. Similar to [6],

our focus is only on 2D rectangular shapes (corresponding to windows) of a rectified

image of the building facade. The nature of structured environments allows us to

assume that any split operation is horizontally symmetric and applicable to all de-

tected windows. Parsing in our context is the process of determining the sequence of

splits that most likely generated the pixels inside the window. We adapt the general

framework of [6] and their MCMC sampling of the posterior to work on our window

lattice.

Following regular convention for generative grammars, the grammar is defined

as a 4-tuple G = (VN , VT , R, S) such that (1) VN and VT constitute a finite set of

non-terminal and terminal symbols, (2) R is the set of rules or productions and (3)

S is the start symbol. S is initialised to each of the bounding rectangles returned by

lattice discovery as opposed to the whole facade in [6]. Grammar symbols consist

of operators and regions and each production takes the form below:

r : op[attrib1, attrib2] −→ r1, r2

where op ∈ {hsplit, vsplit} correspond to ways of splitting a region r into two subre-

gions r1 and r2 along the specified coordinate direction. Region attributes (x, y, w, h)

correspond to position, width and height in the input image of the rectangular re-

gion while attributes associated with a split operation are ratio of total area and

thickness of the dividing line. A series of derivation steps that partition the starting

window into subregions is naturally encoded by the parse tree.

137

(a) (b)
0 :: hsplit[0.5, 5.0] −→ 1, 2
1 :: vsplit[0.49, 3.0] −→ 3, 4
2 :: vsplit[0.49, 3.0] −→ 5, 6

0 :: vsplit[0.29, 0] −→ 1, 2
2 :: hsplit[0.5, 2.0] −→ 3, 4

(c) (d)

Figure 6.3: Parsed window focusing on a section from (a) dome image of Fig. 5.4a
and (b) building image of Fig. 6.1a. (c) Derivations for parse tree of
(a) and (d) derivations for parse tree of (b).

The semantic rules of a split operation govern how child nodes inherit at-

tributes from the parent. Consider a vertical split parametrized by area ratio a and

thickness th on a region with attributes (x, y, w, h). The division occurs at offset

hsplit = a × h resulting in two subregions with attributes (x, y, w, hsplit − th) and

(x, y + hsplit + th, w, h− hsplit − th).

Given a grammar specification customized for the input image, [6] tries to

infer the parameters of the attributes that best explain the data. We only require

the user to specify the total number of required partitions pw, thus inferring both the

rules and the attributes. A particular challenge faced by [6] was due to occlusions.

Since occlusions are inevitable when modeling a whole facade, we use grammars to

model only the inside of a window. The posterior is sampled using Data-Driven

138

MCMC to generate proposals that have a high probability of being accepted.

Each iteration of MCMC begins by resetting all window elements to S. A

new window style is proposed by n applications of rules that generate pw leaf nodes

in the parse tree. This becomes the proposed MCMC state. A rule is generated

in three phases. A leaf node is first selected at random from the current set of

terminal nodes. A subdivision rule is then picked according to prior probabilities

for each rule. In order to align splits with edges, we use the row and column sums of

the normalized gradient image over all windows as proposal distributions to sample

ratio and thickness attributes. The splits are applied such that horizontal symmetry

is maintained. The forward and reverse proposal probability is the product of the

probabilities of each step. Since we assume uniformity, the rules are applied to all

windows simultaneously.

The MCMC acceptance ratio test requires definition of the likelihood for the

newly proposed state. Under independence assumptions, the probability of a parse

tree is the product of all rules applied to derive it. Our grammar being relatively

simple, all rules are given uniform prior probabilities. For interior nodes of the tree,

splits should be aligned with a high gradient edge. Given hsplit and th of a vertical

split in region ri, we search within a small threshold distance (≈ ±10 scan lines in

that region) to find the two rows with maximum gradient sum Mg, centered at row

Rg and separated by 2×th. The split likelihood Psplit(ri) = Mg

W+W
×∆(|Rg−hsplit|, σ),

where the first term is the mean gradient strength over the two rows and ∆ is a

Gaussian weighting function. Horizontal splits are handled in an analogous manner.

We found this technique to be robust to misalignments caused by rectification or

occluding foreground. In the case of terminal leaf nodes, strong edges should be

penalised. Let Sj
r and Sj

c be the maximum gradient row and column sum for terminal

node rj. The likelihood Pleaf (rj) = exp(−3×MAX(Sj
r

W
, Sj

c

H
)). It is to be noted that

during the computation of Sj
r and Sj

c , gradients closer to the region boundaries are

139

given less weight.

Figure 6.3 shows the output of the parsed windows and generating produc-

tions for the two buildings in figures. 5.4 and 6.1a. Despite the lack of sufficient

image information due to reflections within many of the windows, our use of global

information over all the windows allows us to accurately localize the offsets for

making a split.

6.3 Facade Segmentation

So far, our discussion has mostly centered on the window grid and its in-

terior. Another key property to infer from the image is the building extent and

occluded regions. Can we segment out building pixels in a single image without any

prior knowledge of background or foreground appearance? By making assumptions

founded on common architectural trends, we demonstrate how a binary mask can

indeed be extracted. Just as motion was used in Chapter 4 to generate training

examples, here we use the window lattice to bootstrap the learning.

Given an image of a building, we assume that the pixels or texture imme-

diately around the perimeter of a window belong to the building wall. Unless the

building is comprised of glass walls, this is the case in most buildings. Secondly, a

color Gaussian Mixture Model (GMM) can describe the majority of pixels in the

image. Many segmentation and foreground separation problems [135, 147] use the

latter assumption for probabilistic classification. We will describe how these simple

assumptions may assist in recovering the building pixels.

As a first step, training examples are required to learn a color model of the

building wall from the given image. Once again, rather than learning a universal

model for generic building pixels, an image-specific model is built by extracting the

RGB values of pixels in a band around each window. These pixels (shown as a

binary mask in Fig. 6.4) are assumed to be generated by the building texture and

constitute our training set. Learning involves estimating parameters of a Gaussian

140

Figure 6.4: Mask used to extract training examples for the wall pixels. Pixels
around the detected windows are used to learn a color model.

Mixture modeling the RGB values in the example set. We used the publicly available

Cluster package [16] to build the Gaussian model. For now, we assume that the

generating distribution for the wall is a single Gaussian W represented by mean Wµ

and covariance WR. Building walls with multiple colors or artifacts such as shadows

can cause problems. However, most building walls are painted in a uniform color.

Having a model of the wall texture, we proceed to cluster the RGB values

in the entire image into separate Gaussian distributions Gi : i ∈ 1..N with mean

and covariance µi and Ri respectively. The number of subclasses N is typically less

than 10 and computed automatically by the Cluster package using the minimum

description length (MDL) criterion. Since clustering the whole image can be slow,

the image is smoothed with a Gaussian kernel and subsampled at half the original

141

resolution before estimating the parameters. Based on the homogeneous texture

assumption, one of the Gaussian components will correspond closely to the wall

texture. The maximum likelihood wall cluster w is computed as

w = arg max
i

p(Gi = W)

where

p(Gi = W) =
1

(2 ∗ π)3/2R
1/2
i

exp {−1

2
(Wµ − µi)

T R−1
i (Wµ − µi)}.

Figure 6.5 shows the mask generated for the two images, using the window

lattice to learn a color model. The mask seems to correspond very well to the

building pixels and is especially good at separating out the complicated foreground.

Even though there are small holes or islands of incorrectly classified pixels, other

neighborhood constraints such as those used by MRF algorithms should be able to

rectify them. We can also use the mask to compute the facade boundaries (right

column of Fig. 6.5) by thresholding on the row and column sum differences. This

technique is valid because of working with rectified images.

It is important to note that the goal of this section is to focus the robot’s

attention and processing to the most relevant parts of the image. Localizing the

building extent immediately provides clues regarding scale, pose, and occlusions.

There is also room for contextual reasoning as used by Cornelis et al. [23] where

an initial geometry estimate was used to guide searching for objects. The limits of

the facade could be used to generate a likelihood map of potential door locations or

staircases. At a lower level, the mask can be refined in a manner similar to matting

and used for foreground removal. The above techniques serve as a good platform

for semantic inference about building images.

6.4 Foreground Removal

The output of the texture discovery process outlined in the previous chapter

is a set of subimages centered on the tile elements that should be very similar to

142

(a) (b)

(c) (d)

Figure 6.5: Mask of the wall pixels after maximum likelihood classification.
Thresholding on the row and column sum differences between adjacent
locations can be used to approximate the facade extent as illustrated
by the blue rectangle.

one another. We say “should be” because although ideally the tiles are identical,

there are a number of factors which can cause appearance discrepancies, including

natural material variations, illumination changes, spatially-varying resolution due to

perspective, non-planar features, and intrinsic errors in the tile alignment process.

Another—and here the most interesting—reason for tile dissimilarity is that

some tiles may be occluded by or contain reflections of non-sky foreground elements.

The variations enumerated above are mostly describable with low-dimensional models—

Gaussians or mixtures of Gaussians for stochastic variation, blurring and shifting

143

(a) (b)

(c) (d)

Figure 6.6: Virtual graffiti removal. (a) Original image; (b) Foreground pixels as
indicated by MAD outliers; (c) Within-brick exemplar-based inpaint-
ing followed by full tile sampling; (d) 8-base PPCA reconstruction.
Tiles with > 25% outliers were sampled. While there is some loss of
detail in (d), many local characteristics are retained. (Image has been
automatically rectified)

for perspective effects and small misalignments, and large variance radial basis func-

tions (for example) for gradual shading changes across a building facade. However,

foreground elements can be of any kind, and thus are perhaps best treated as outliers

of the building tile pixel model. The two primary questions left are how to explicitly

identify such outliers, and what to replace them with in the final rendering.

We answer the first question by looking at pixel values in corresponding loca-

tions over all tiles under the assumption that the background is visible in a majority

of them. A robust measure of spread, the median absolute deviation (MAD) [90],

144

can be used to assess which pixel values vary enough across the tiles to arouse sus-

picion that a foreground element is present among them.1 Unreliable pixels are

identified by thresholding their MADs—these are so-called MAD outlier pixels. To

be conservative, the threshold is chosen to treat 50% of pixels as outliers.

An obvious approach to answering the second question is to do spatial in-

painting to fill in pixels masked out according to the MAD criterion. A number of

texture synthesis algorithms are available for the task, including patch-based tech-

niques [27, 40], near-regular texture synthesis [106], and graphcut-based methods

[88]. Figure 6.7(e) shows the result of inpainting MAD-induced holes in Figure

6.7(a) with the method of [27] under the special case that the inpainting source

patches are the same sizes as and perfectly aligned with the discovered tiles. This

technique removes the thickest parts of the trees but misses fine foreground detail

and introduces some photometric artifacts. It must also stop before completion

when destination missing pixels only correspond to missing source tile pixels (white

areas indicate unfilled pixels).

As bricks can have significant internal texture and color variation across a

facade (which Figure 1 shows), for them we favor first copying from within the same

tile when possible. This also significantly speeds the process over a whole-image

search. In this case, tiles which are non-trivially occluded (≥ 25% outliers) are

regarded as not possessing a large enough source area to reliably guide inpainting,

and are marked for complete replacement. This occurs in a second stage after

”internal” inpainting. Each such tile is replaced by a random nearby ”good” tile in

a fashion somewhat like image quilting [40].

Another possibility suggested by the alignment of patches is to treat the

problem as one of eigenimage reconstruction. Assuming that a Gaussian process

1 A scalar MAD value is obtained at each pixel by computing it separately for
each color channel and summing

145

(a) (b) (c) (d) (e)

Figure 6.7: Comparison of pixel filling methods. (a) Original image; (b) PPCA
reconstruction, 8 bases; (c) RPCA reconstruction; (d) PCA construc-
tion, 8 bases; (e) Whole-image exemplar-based inpainting [27] with
patches scaled to and aligned with tiles (unfilled holes are white)

describes inter-tile appearance variation fairly well, we can use principal components

analysis (PCA) to model it (e.g., [163]). The intuition is that we want to take each

occluded tile in which some background is visible and “project” it down onto a

set of background-only bases in order to remove or lessen the foreground influence.

However, with some fraction of the tiles “polluted” by unknown foreground elements,

robust PCA (RPCA) techniques [175, 90] are required. [175] throws out whole

bad data samples, but as we would like to use any partially visible background, a

method which estimates intra-sample outliers such as [90] is more appropriate. This

approach uses M-estimators to reduce outlier influence on the reconstruction. It,

too, performs outlier detection using MAD as an initial scale estimation step, but

in practice we have found that it has some problems with our data. For example,

while Figure 6.7(d) shows a standard 8-base PCA reconstruction that as expected

still includes many tree branches, Figure 6.7(c), which uses RPCA, is scarcely better.

Some tiles are cleaned up compared to their original appearance, but ones with too

many outlier pixels are virtually unchanged.

Since the MAD mask with an aggressive threshold seems to identify fore-

ground pixels fairly well, we use another PCA variant called probabilistic PCA

(PPCA) [136] which works when missing data is explicitly identified beforehand.

146

Figure 6.8: Removal of lamppost and shadow. Right image is 16-base PPCA
reconstruction from MAD outliers. Edge artifacts on bottom image
are due to flood-filling black background to white.

Using an expectation-maximization (EM) approach, PPCA generates maximum

likelihood estimates for the missing data, which for us serves to fill in the image

holes erased by the MAD mask. As the percentage of pixels occluded in a given tile

rises, however, the reliability of the reconstruction naturally deteriorates when too

many missing values are recovered based on too few real pieces of data. We mitigate

this issue by reconstructing only tiles that have ≤ 25% outliers in them according to

the MAD mask. All other tiles are treated as fully occluded and simply sampled de

novo from the learned PPCA basis. Since PPCA can handle missing data, it works

on the fractional tiles along the edges of the image as in 6.7(b), whereas RPCA and

PCA need full tiles to do a reconstruction.

6.5 Summary

The complex nature of the real-world makes purely bottom-up processing

insufficient under noisy or uncertain situations. In such cases, we demonstrated

147

how to bring in domain knowledge, especially using topological priors, to reason

about the scene. For a task like automatic foreground removal and hole filling

from single images of buildings, we introduced several simple techniques that use a

partially discovered window grid on the facade to extract some semantic properties

of the building. First, the partial grid is completed to identify potential locations

of missing or occluded windows. Some insight into the architecture of the facade

can be gained by identifying the common subdivisions within each window. These

are represented by split grammars and the rules that derived a particular window

grid are inferred in the spirit of image parsing. Gaussian color models are used

to segment out the building wall from the image and localize facade boundaries.

Finally, we demonstrated a promising approach to automatic foreground feature

removal in static images of building textures.

148

Chapter 7

CONCLUSION

7.1 Key Observations

In the last few chapters, we have provided a set of solutions to bring in do-

main semantics into the larger problem of robot-based modeling of buildings and

urban environments. Automatic modeling of architecture has been a popular area

of research, and many solutions have been proposed depending on design issues such

as type of sensors, automatic- or manually-guided acquisition, mounted platform,

human or mobile agent, and intended audience. A vast majority of these methods

proceed in a bottom-up fashion by piecing together sensor input from multiple loca-

tions and applying efficient but brittle closed form solutions to construct a virtual

representation. Developing a completely automatic mobile platform capable of path

planning, robot navigation, image acquisition, texture mapping and structure recov-

ery is extremely hard. Researchers have therefore tried to break down the problem

and handle each of them in isolation. However, in the context of an end-to-end sys-

tem, we believe that the whole is greater than the sum of its parts. An integrated

solution gives rise to a whole new series of issues and we have tried to focus on those

that have been only marginally addressed by previous work.

One such issue is the quality of textures that are mapped to the surface

model; this problem is usually sidelined by the seemingly more important task of

estimating scene geometry. We also devoted some attention to the task of robot

navigation and image capture. Rather than path tracking or pure exploration using

149

on-board sensors alone, we complement these algorithms by extracting higher-order

information from satellite imagery. Finally, the very complexity of our proposed

system and the nature of the real world guarantee an innumerable number of situa-

tions in which our mobile agent will be uncertain about how to proceed. In such a

predicament, we believe that the agent should make use of high level domain seman-

tics to reason about the scene. Classical computer vision reasons about appearance,

which alone might be inadequate outside lab environments over a long period of

time. Like humans, the agent must have the ability to rationalize about functional

and topological characteristics as well. We demonstrated how some of these a priori

spatial relationships may be encoded, discovered, and exploited to extract semantic

properties of architectural elements. More than any specific technique, we consider

this to be the overarching theme of our work, and a principle that will have a great

role to play in mobile robotics.

7.2 Contributions

This thesis makes the following contributions towards the goal of automatic

robot-based modeling of buildings in an urban environment:

• We introduced the components and their interactions of an end-to-end system

whereby a GPS-enabled robot equipped with on-board sensors and an aerial

map of the environment can build a photo-realistic 3D representation of an ur-

ban environment. In addition to planning, robot navigation, image matching,

mosaicing, and structure estimation, we argued the case for a semantic mod-

ule to combine bottom-up and top-down processes. This scheme of knowledge

transfer between processes is referred to as a cognitive loop by [22], enabling

the strengths of one algorithm to overcome the weaknesses of another.

• We exploited the building outline visible from an aerial image to develop a

randomized view planner that efficiently builds incremental paths around the

150

building. The goal is to guarantee that every face of the polygonal facade

model will be captured at good quality in a minimum number of views. A

quality metric is defined for each cell of the environment map based on fore-

shortening and camera resolution, and a path is planned keeping robot dy-

namics into account.

• We described how a “birds eye-view” provided by satellite imagery can be

used to assist in vehicle localization in the case of a manually guided robot. A

multi-modal Monte Carlo Localization (MCL) framework is introduced that

can correct for GPS errors (very common in urban canyons) and localize the

vehicle on the road. The underlying algorithm is essentially a spatial tracker

that traces the road in the vicinity of the vehicle using either GPS-driven or

texture-driven dynamics. To account for multiple types of drivable paths, we

defined various road-likelihood metrics with automatic switching to the most

appropriate one. Accurate and efficient localization is necessary for any mobile

platform, especially when subsequent processes such as image matching rely

on GPS-tagged data.

• We adapted our road tracer to work as a localized planner in the case of

an autonomous robot. Given the current location of a robot, the road/path

ahead of the vehicle is traced in the aerial image to predict the nature of

the immediate terrain. Appropriate signals are given to the robot such as

warnings about sharp corners or directions to the nearest road in case it is

stranded off-road. In the latter case, on-board sensors alone might be too

restrictive.

• We developed a novel spatio-temporal inpainting technique that recovers a

clean texture map of partially occluded building facades from video or im-

ages. Images from a sequence are stabilized and stacked together to form

151

a timeline of potential pixels that constrain what gets included in the tex-

ture map. Mosaic regions polluted by foreground objects are automatically

identified through a robust measure of pixel color variance over the registered

images. We then try to infer the building pixels in the polluted regions via com-

bined spatial and temporal search. To overcome inefficiencies of the exhaustive

search procedure in classical inpainting, we bootstrap training of a classifier

from automatically generated examples to disambiguate between foreground

and background. We compared both the accuracy and efficiency of three dif-

ferent classifiers with SSD-based inpainting and demonstrated speed-ups of an

order of magnitude, while also improving robustness.

• We draw the analogy that building facades are often examples of Near-Regular

Textures (NRT) [66]. We derived a Markov Chain Monte Carlo (MCMC)

approach to discover such patterns from images. A Markov Random Field

(MRF) model for NRTs and lattice structures is defined; entities in the image

are grouped together based on its adherence to this model. The grouping is

run on tokens extracted by an image discretization method such as an inter-

est point detector or any other high-level feature detector. Specifically for

windows and buildings under perspective, our feature extractor is a simple

yet efficient procedure to extract out candidate rectangle structures from the

image. For MRF grid extraction, we formulated the problem in a Bayesian

sense that takes into account appearance, shape, and topology constraints.

Various heuristics are combined in a probabilistic manner to construct the

MRF interaction potentials for connected window neighbors. To make the

MCMC optimization efficient, we introduced an unguided and guided scheme

of proposal updates during each iteration that still guarantee conditions of

irreducibility and aperiodicity.

• We demonstrated very simple methods that illustrate how the parameterized

152

window pattern may be used to glean additional semantic information of the

facade such as the position and boundaries of occluded or missing windows,

facade extent, and a binary mask of the wall texture. Though our current

methods rely on some assumptions, they are built upon common architectural

styles and practices and should therefore be widely applicable. The motivation

here was more proof-of-concept than hundred percent accuracy.

• To develop the theme of image parsing, we showed that the inside of windows

can be adequately described by split grammars [173]. The MCMC framework

is extended to take the detected windows as input and infer the grammar

rules that best explain the subdivisions within the window. A data-driven

scheme of proposal updates is described to make state changes that have a

high probability of being accepted. By using data from all detected windows,

the technique is more robust to occlusions or reflections within windows. The

end result is a parse tree and its derivation according to the pre-specified

grammar. These semantic descriptions can then be used for outlier removal

and image synthesis.

• We compared several methods for replacing or “scrubbing” away missing

or occluded tiles (windows/bricks) via robust subspace reconstruction and

exemplar-based inpainting. By nature of symmetry, pixel variance allows us

to identify outlier pixels. In addition to timeline inpainting, the alignment of

patches allows us to treat the problem as one of eigenimage reconstruction.

Tiles in which atleast some background is visible are projected down onto a

set of background-only bases. Different variants of PCA that can handle out-

liers or missing data are compared to assess the quality of the background

reconstruction.

153

7.3 Limitations and Future Extensions

There are several limitations in the ideas presented in this thesis. A complete

solution to the urban modeling problem is beyond the scope of an individual gradu-

ate student. We divide the future work into two parts. This section discusses some

specific extensions that may be applied to the techniques put forth in this thesis.

The next section puts forth some broad open issues that need to be addressed in

future research.

7.3.1 Robot Navigation

Particle Distribution and Dynamics For vehicle localization, one short-coming

of the weighted mean estimate of particle locations is that it does not take into

account the distribution which could be clustered over several different roads. This

happens most noticeably at intersections where GPS data seemed most unreliable.

Clustering algorithms could be used to track multiple peaks in such situations.

Using GPS-driven or texture-driven dynamics in isolation does not seem robust for

long runs. It would be interesting to see the effects of adding the dynamics for

each particle as another mode in the mixed-state tracker. This would allow some

particles to follow the GPS curve, while other particles would follow the most likely

road. Intuitively this seems more robust.

Combining Multiple Sensors Future work includes integrating information from

on-board sensors such as a camera and laser. With aerial images and GPS alone, our

algorithm can identify the possible road that the vehicle is on. The use of additional

sensors would allow us to correlate the on-board view with the aerial one, giving

information about the position and orientation of the vehicle within the road. This

can be useful in multiple lane roads or intersections. In off-road environments shown

154

in figure 3.5, it would be very useful to complement aerial imagery with elevation

data sets.

Vehicle Guidance Our current system of constructing localized plans from the

robots current location was tested on data from the actual Grand Challenge com-

petition with very promising results. Nevertheless, for real-time operation much

tighter integration needs to be done between the aerial and other on-board modules

that feed into the actual steering decision with the ability to resolve conflicts. The

planner currently only finds a single road near the vehicle. We have done some

preliminary work using skeletonization and watershed image processing techniques

to extract a road network in the vicinity of the vehicle, offering more choices to the

vehicle and possibly graph-based path-planning.

7.3.2 Timeline Inpainting

Quality of Synthesis From the results at various stages of the process, it is

obvious that Stage 2 spatial inpainting is the weakest. This is because CPT in-

painting relies on greedy matching of patches. A single bad choice can propagate

errors without any backtracking procedure. For example, the second window from

the left in the upper story of Building B reveals an error in the filling-in process

that “snowballs” with subsequent patch copies. The consequences of such mistakes

could be reduced with gradient-domain methods for blending patches such as [125].

We believe that incorporating the higher level semantic knowledge (described in

Chapters 5 and 6) about building entities like whole windows or doors and their

regular arrangements into the inpainting will help the most, and it remains future

work.

155

Eliminating Depth-induced Artifacts Our image registration algorithm as-

sumes that the building facade is planar and can be modeled by a homography.

Slight deviations from planarity can then appear as artifacts in the mosaic. Other

structures such as as columns would need explicit recognition and handling, which

we currently do not do. The MAD criterion to detect high energy foreground pixels

would also not work for homogeneous regions such as vegetation or billboards. The

geometrically correct method to overcome these problems would be to extract a

depth map using techniques like plane-sweep stereo and avoid copying pixels from

different layers. A more interesting image-based rendering technique would be to

apply the principle of Digital Photomontage [2], which combines parts of a set of

photographs into a single composite. Currently, we copy small (11×11) patches into

the mosaic that are prone to context violations. By running our classifier on each

frame of the sequence, we could generate an approximate binary mask of building

and foreground pixels; these are usually much larger regions. The building pixels

from various images can then be combined into a composite. Like [2], seam ob-

jectives can be specified to match colors and gradients at region boundaries where

adjacent pixels in the composite come from different source images.

Removing Foreground from Input Sequence This work discussed removing

foreground elements from the mosaiced image, and we showed visually compelling

results by combining appearance and temporal information into an inpainting frame-

work. Armed with a clean mosaic and a depth map computed using dense stereo

from the input sequence, we could attempt to remove foreground elements from

frames of the input image sequence. The first challenge is to identify the foreground

in the frame. Once again, there are two cues that may be applicable. Firstly, a suit-

able similarity metric on appearance could be defined to compare the input frame

156

and the clean texture map in the same reference frame (input image warped to mo-

saic or vice-versa). For thin regions that exhibit high parallax, motion cues from

stereo could be more powerful. Once we can mask out foreground regions from each

frame, pixels may be copied from the timeline mosaic to fill in the holes.

7.3.3 Lattice Discovery

Occasionally, there might be a missing edge between two neighboring windows

in the grid. However, this can be easily filled in as a post-process; there is enough

structure information from the rest of the lattice to facilitate this. A more pressing

issue is when the initial tokenizer fails to find a node. Factors such as noise and

occlusion do indeed cause this problem. Currently, the MCMC simulation only

performs the grouping on the initially extracted nodes. Alternately, it could also

add new nodes (in addition to hypothesizing edges between nodes) and accept or

reject it within the MCMC framework. This would fall under the class of problems

where the dimensionality of the state changes across iterations, and Reversible Jump

MCMC (RJMCMC) has been very popular for this. Incorporating this would be a

natural extension, and remains future work.

An issue that needs to be tackled is the problem of lattice vectors that loop

back to rectangle within another rectangle. This situation can be seen in Fig. 5.18b.

Overestimating rectangles sometimes result in similar but separate rectangles being

hypothesized around the boundary of a window. While pairwise constraints can

prevent neighbors from connecting to such overlapping rectangles, a higher-order

constraint needs to be specified to prevent edges from looping back to a window

that is already part of the lattice. Possible avenues to explore are heuristics during

pruning or including a global prior to prevent this from happening.

157

7.3.4 Building Semantics

The different techniques presented in Chapter 6 primarily show how much

information can be extracted from a single building image, starting simply from the

grid assumption alone. More a proof-of-concept, they can be extended to extract

more qualitative information.

Irregular Window Spacing Because of the low dimensional representation of

the grid with just an offset and inter-tile spacings, our lattice completion results are

not accurate when the window spacing is irregular such as that in Figure 6.2. One

approach to identify windows even in these hard situations is to learn the Gaussian

color representation of the window interiors and merge rectangular structures that

approximate the regular grid alignment as much as possible.

Subspace Reconstruction While foreground pixels are erased fairly reliably, the

PCA approach results in a loss of background detail. This is primarily because of the

low number of bases being used; with a slightly more accurate initial segmentation of

outliers and a more sophisticated model of intra-tile color and gradient consistency,

more photo-realistic results can be achieved. However, we have also presented the

alternative of exemplar-based inpainting, which particularly for bricks can be used

to obtain a more realistic final image.

Currently, both our spectral and lattice discovery methods disallow some tile

non-regularity in either spacing or size during the foreground removal process. This

can result in misalignment artifacts in the scrubbed images. Implementing per-tile

optimization of alignment with the image gradient, as well as dynamic programming

for ragged tile edges after [40] might improve rendering quality.

158

7.4 Future Directions

Appearance, Topology and Function We have demonstrated how topolog-

ical relationships such as grid structures can be used to reason about man-made

structures, when visual evidence alone might be insufficient. Of late, the computer

vision community has developed many advanced object recognition and detection

algorithms. How do we combine these two paradigms of appearance and topological

models to enhance detection rates? Further, can we also add functional semantics

to the above two models? For example, the dictionary defines a chair as “a piece of

furniture consisting of a seat, legs, back, and often arms, designed to accommodate

one person”. A functional definition might just be “something a person sits on”. By

this token, a rock could be classified as a chair. It is also by functional modeling,

that a system such as ours should never detect a door anywhere other than on the

first floor of a building facade.

Closing the Loop This thesis showed how different types of information such

as building background, foreground objects, window structures, brick textures, etc.

can be discovered without any supervised training procedures. Instead very simple

implicit rules about architectural elements have been exploited. The issue of how

this information extracted by the semantic module will be passed down to the robot

and image processing modules is an open problem. What kind of algorithms and

process architecture could allow feedback from the higher module that an image

just acquired by the robot was occluded, lacked focus, or did not contain enough

features that could be useful for modeling? How can the recognition module abort

the structure-from-motion routine from extensively computing the 3D model of a

staircase and simply synthesize a 3D staircase with the extracted semantic param-

eters?

159

Figure 7.1: Can we make use of prior models of specific building elements to
estimate structure?

Urban Synthesis Supposing we were given a single noisy image of a building

such as shown in Fig. 7.1. Based on what we know, humans can conceptualize a

rough 3D model of this facade with simplifying assumptions about the appearance

of its various components. While one wouldn’t want to exert such high demands on

an algorithm, there are situations when a similar mode of reasoning could be useful.

Suppose the recognition module is able to detect and localize some of the pixels

as belonging to a flight of stairs. Would it be possible to compute structure-from-

analogy as opposed to a full scale structure-from-motion procedure for recovering the

shape of staircases? Based on some simple geometric measurements and appearance

attributes recovered from the image, the algorithm could just as well synthesize a

flight of stairs in the three-dimensional model, potentially eliminating many of the

spurious jagged artifacts of Fig. 1.2. This technique could thus make use of prior

models of specific building entities to ease the demands on structure estimation.

160

In contrast to urban modeling, can we design algorithms that can generalize

about architectural characteristics from just a few images. Consider a few tens of

images captured haphazardly around a city or campus. Would it be possible for

an algorithm to recognize the architectural styles, the building pattern, the general

textures, and overall design philosophy of the cityscape? If so, can a whole city

that follows the same general traits captured by the images be synthesized, without

explicit structure recovery? One may not be able to avoid structure completely, as

various ratio and area constraints might need to be gleaned from the images. Nev-

ertheless, such an idea would be very popular in gaming or virtual world scenarios.

Another possibility for synthesis would be to change the style of a building

(say from Victorian to Gothic) without altering the structure. One can manipulate

the pixels to introduce such realistic artifacts. Window shutters could be at differ-

ent heights, curtains may be altered, or the brick texture could be replaced with

stone. By extracting as much semantic information as possible, we can makes this

a reasonably achievable target.

Drawing the Line One can also ask at what point the robot throws its hands

up in the air and gives up trying to understand an image. An ivy-covered building

is shown in Figure 7.2. Any trained appearance model would classify most of the

facade as plant texture. The windows by themselves have very little to suggest

that they are indeed part of a building. Though seemingly wild, humans are adept

at detecting traces of man-made structures that allow us to surmise that this is a

building in an urban environment and not wild vegetation. More than any single

trait, it is the combination of glass-like grid structures, the arched gate, relaxed

people at ground level, lampshade etc. that abets this. Can we teach a robot

to perform such contextual reasoning from multiple cues even when each cue in

isolation has very little evidence for support?

161

Figure 7.2: A challenging ivy covered building for semantic inference.

162

BIBLIOGRAPHY

[1] A. Aboshosha and A. Zell. Robust mapping and path planning for indoor
robots based on sensor integration of sonar and a 2d laser range finder. In
IEEE Int. Conf. on Intelligent Engineering Systems, 2003.

[2] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex
Colburn, Brian Curless, David Salesin, and Michael Cohen. Interactive digital
photomontage. ACM Transactions on Graphics, 23(3):294–302, 2004.

[3] Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh Agrawala, Michael
Cohen, Brian Curless, David H. Salesin, and Richard Szeliski. Panoramic
video textures. ACM Transactions on Graphics, 24(3):821–827, August 2005.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[5] A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp, C. Engels, D. Gallup,
P. Merrell, M. Phelps, S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewenius,
R. Yang, G. Welch, H. Towles, D. Nister, and M. Pollefeys. Towards urban
3d reconstruction from video. In 3DPVT ’06: Proceedings of the Third Inter-
national Symposium on 3D Data Processing, Visualization, and Transmission
(3DPVT’06), pages 1–8, Washington, DC, USA, 2006. IEEE Computer Soci-
ety.

[6] Fernando Alegre and Frank Dellaert. A probabilistic approach to the seman-
tic interpretation of building facades. In International Workshop on Vision
Techniques Applied to the Rehabilitation of City Centres, 2004.

[7] P. Allen, I. Stamos, A. Gueorguiev, E. Gold, and P. Blaer. Avenue: Automated
site modeling in urban environments. In Third Intl. Conf. on 3-D Digital
Imaging and Modeling (3DIM ’01), volume 00, page 357, Los Alamitos, CA,
USA, 2001.

[8] P. Allen, I. Stamos, A. Troccoli, B. Smith, M. Leordeanu, and Y. Hsu. 3-D
modeling of historic sites using range and image data. In Proc. Int. Conf.
Robotics and Automation, 2003.

163

[9] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan.
An introduction to mcmc for machine learning. Machine Learning, 50:5–43,
2003.

[10] Michael Ashikhmin. Synthesizing natural textures. In ACM Symposium on
Interactive 3D Graphics, 2001.

[11] Adrian Barbu and Song-Chun Zhu. Generalizing swendsen-wang to sampling
arbitrary posterior probabilities. IEEE Trans. Pattern Anal. Mach. Intell.,
27:1239–1253, 2005.

[12] Daniel Bekins and Daniel G. Aliaga. Build-by-number: Rearranging the real
world to visualize novel architectural spaces. IEEE Visualization, 00:19, 2005.

[13] A. Berg, T. Berg, and J. Malik. Shape matching and object recognition us-
ing low distortion correspondence. In IEEE Computer Vision and Pattern
Recognition (CVPR), pages 26–33, 2005.

[14] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In
SIGGRAPH, pages 417–424, 2000.

[15] J. Borenstein, H.R. Everett, and L. Feng. Where am i? sensors and methods
for mobile robot positioning. Technical report, The University of Michigan
UM-MEAM-94-21, 1994.

[16] C. A. Bouman. Cluster: An unsupervised algorithm for modeling Gaussian
mixtures. Available from http://www.ece.purdue.edu/˜bouman, April 1997.

[17] C. Brenner, N Haala, and D. Fritsch. Towards fully automated 3d city model
generation. In Workshop on Automatic Extraction of Man-Made Objects from
Aerial and Space Images III, 2001.

[18] D. Capel and A. Zisserman. Computer vision applied to super resolution.
IEEE Signal Processing Magazine, 20:75–86, 2003.

[19] D. P. Capel. Image Mosaicing and Super-resolution. Ph.D. dissertation, Uni-
versity of Oxford, 2001.

[20] M. Ceccarelli and G. Antoniol. A deformable grid matching approach for
microarray images. IEEE Trans. Image Processing, 15(10):3178 – 3188, 2006.

[21] Tony Chan and Jianhong Shen. Image Processing And Analysis: Variational,
Pde, Wavelet, And Stochastic Methods. Society for Industrial and Applied
Mathematics, 2005.

164

[22] N. Cornelis, B. Leibe, K. Cornelis, and L. Van Gool. 3d city modeling using
cognitive loops. In Third International Symposium on 3D Data Processing,
Visualization, and Transmission (3DPVT’06), 2006.

[23] Nico Cornelis, Kurt Cornelis, and Luc Van Gool. Fast compact city modeling
for navigation pre-visualization. In CVPR ’06: Proceedings of the 2006 IEEE
Conference on Computer Vision and Pattern Recognition, 2006.

[24] H. S. M. Coxeter. Introduction to Geometry. Wiley; 2 edition, 1989.

[25] D. Crandall and D. Huttenlocher. Composite models of objects and scenes
for category recognition. In IEEE Computer Vision and Pattern Recognition,
2007.

[26] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bilayer segmentation
of live video. In Proceedings of the National Conference on Computer Vision
and Pattern Recognition, 2006.

[27] A. Criminisi, P. Pérez, and K. Toyama. Region filling and object removal by
exemplar-based image inpainting. IEEE Trans. Image Processing, 13(9), 2004.

[28] Antonio Criminisi. Accurate Visual Metrology from Single and Multiple Un-
calibrated Images. Ph.D. dissertation, University of Oxford, Dept. Engineering
Science, Dec. 1999. D.Phil. thesis.

[29] T. Danner and L. Kavraki. Randomized planning for short inspection paths.
In Proc. Int. Conf. Robotics and Automation, 2000.

[30] J. Davis. Mosaics of scenes with moving objects. In Proceedings of the National
Conference on Computer Vision and Pattern Recognition, 1998.

[31] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture
from photographs. In SIGGRAPH, 1996.

[32] Paul E. Debevec. Modeling and Rendering Architecture from Photographs.
Ph.D. dissertation, University of California at Berkeley, Computer Science
Division, Berkeley CA, 1996.

[33] Defense Advanced Research Projects Agency (DARPA). DARPA Grand Chal-
lenge. Available at http://www.darpa.mil/grandchallenge. Accessed July
22, 2003.

[34] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the Condensation
algorithm for robust, vision-based mobile robot localization. In Proceedings of
the National Conference on Computer Vision and Pattern Recognition, pages
588–594, 1999.

165

[35] A. Dick, P. Torr, and R. Cipolla. Modelling and interpretation of architecture
from several images. Int. J. Computer Vision, 60(2), November 2004.

[36] Anthony Dick. Modelling and Interpretation of Architecture from Several Im-
ages. Ph.D. dissertation, University of Cambridge, 2001.

[37] Gyuri Dorkó and Cordelia Schmid. Object class recognition using discrimi-
native local features. Rapport de recherche RR-5497, INRIA - Rhone-Alpes,
February 2005.

[38] Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun. Fragment-based image
completion. ACM Transactions on Graphics, 22(3):303–312, 2003.

[39] R. Duda, P. Hart, and D. Stork. Pattern Classification, 2nd ed. John Wiley
and Sons, 2001.

[40] A. Efros and W. Freeman. Image quilting for texture synthesis and transfer.
In SIGGRAPH, 2001.

[41] A.F. Elaksher and J.S. Bethel. Reconstructing 3d buildings from lidar data.
In Photogrammetric Computer Vision (PCV02), page A: 102, 2002.

[42] D. Farin, P. de With, and W. Effelsberg. Robust background estimation for
complex video sequences. In Proceedings of the IEEE International Conference
on Image Processing, 1997.

[43] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models
from few training examples: An incremental bayesian approach tested on 101
object categories. In IEEE Computer Vision and Pattern Recognition, 2004.

[44] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object cate-
gories from google’s image search. In Proceedings of the 10th International
Conference on Computer Vision, Beijing, China, October 2005.

[45] M. Fischler and R. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Com-
munications of the ACM, 24(6):381–395, 1981.

[46] A. W. Fitzgibbon and A. Zisserman. Automatic 3D model acquisition and
generation of new images from video sequences. In Proceedings of European
Signal Processing Conference (EUSIPCO ’98), Rhodes, Greece, pages 1261–
1269, 1998.

[47] C. Frueh and A. Zakhor. 3-D model generation for cities using aerial pho-
tographs and ground level laser scans. In Proceedings of the National Confer-
ence on Computer Vision and Pattern Recognition, 2001.

166

[48] C. Frueh and A. Zakhor. Constructing 3-D city models by merging ground-
based and airborne views. In Proceedings of the National Conference on Com-
puter Vision and Pattern Recognition, 2003.

[49] Christian Früh, Siddharth Jain, and Avideh Zakhor. Data processing algo-
rithms for generating textured 3d building facade meshes from laser scans and
camera images. Int. J. Comput. Vision, 61(2):159–184, 2005.

[50] Christian Früh and Avideh Zakhor. An automated method for large-scale,
ground-based city model acquisition. Int. J. Comput. Vision, 60(1):5–24, 2004.

[51] A. Fusiello, E. Trucco, T. Tommasini, and V. Roberto. Improving feature
tracking with robust statistics. In Pattern Analysis and Applications, 1999.

[52] D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys. Real-time
plane-sweeping stereo with multiple sweeping directions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2007.

[53] Atanas Georgiev and Peter K. Allen. Vision for mobile robot localization
in urban environments. In Int. Conf. Intelligent Robots and Sytems (IROS),
2002.

[54] Atanas Georgiev and Peter K. Allen. Vision for mobile robot localization in
urban environments. In Proc. of IEEE Int. Conference on Intelligent Robots
and Systems, Lausanne, Switzerland, pages 472–477, October 2002.

[55] H. Gonzalez-Banos and J. Latombe. A randomized art-gallery algorithm for
sensor placement. In Proc. 17th ACM Symp. on Computational Geometry,
2001.

[56] Peter. J. Green. Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrika, 82:711–732, 1995.

[57] Branko Grunbaum and Geoffrey Shephard. Tilings and Patterns. W.H. Free-
man & Co., 1987.

[58] L. Hamey and T. Kanade. Computer analysis of regular repetitive textures.
In DARPA Image Understanding Workshop, 1989.

[59] Feng Han and Song-Chun Zhu. Bottom-up/top-down image parsing by at-
tribute graph grammar. In Proc. of the IEEE International Conference on
Computer Vision (ICCV05), 2005.

[60] G. M. Hans. Fast determination of parametric house models from dense air-
borne laser scanner data. Int’l Archives Photogrammetry and Remote Sensing
(IAPRS), 32, part 2W1:1–6, 1999.

167

[61] M. Hansen, P. Anandan, K. Dana, G. van der Wal, and P. Burt. Real-time
scene stabilization and mosaic construction. In DARPA Image Understanding
Workshop, 1994.

[62] Karsten Hartelius and Jens Michael Carstensen. Bayesian grid matching.
IEEE Trans. Pattern Anal. Mach. Intell., 25(2):162–173, 2003.

[63] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[64] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[65] W.K. Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

[66] James H. Hays, Marius Leordeanu, Alexei A. Efros, and Yanxi Liu. Discovering
texture regularity as a higher-order correspondence problem. In 9th European
Conference on Computer Vision, May 2006.

[67] Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and
Applications, 6(11):56–67, November 1986. revised from Graphics Interface
’86 version.

[68] J. Hoschek and D. Lasser. Fundamentals of Computer-Aided Geometric De-
sign. A.K. Peters, 1993.

[69] Jinhui Hu, Suya You, and Ulrich Neumann. Approaches to large-scale urban
modeling. IEEE Computer Graphics and Applications, 23:62–69, 2003.

[70] Terrance L. Huntsberger, Hrand Aghazarian, Yang Cheng, Eric T. Baum-
gartner, Edward Tunstel, Chris Leger, Ashitey Trebi-Ollennu, and Paul S.
Schenker. Rover autonomy for long range navigation and science data acquisi-
tion on planetary surfaces. In IEEE Intl. Conf. on Robotics and Automation,
pages 3161–3168, 2002.

[71] M. Isard and A. Blake. Contour tracking by stochastic propagation of con-
ditional density. In Proceedings of the European Conference on Computer
Vision, pages 343–356, 1996.

[72] M. Isard and A. Blake. Condensation – conditional density propagation for
visual tracking. Int. J. Computer Vision, 29:5–28, 1998.

[73] M. Isard and A. Blake. A mixed-state Condensation tracker with automatic
model-switching. In Proc. Int. Conf. Computer Vision, pages 107–112, 1998.

168

[74] J. Jia, T. Wu, Y. Tai, and C. Tang. Video repairing: Inference of foreground
and background under severe occlusion. In Proceedings of the National Con-
ference on Computer Vision and Pattern Recognition, 2004.

[75] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector
Learning. MIT Press, 1999.

[76] N. Jojic and B. Frey. Learning flexible sprites in video layers. In Proceedings of
the National Conference on Computer Vision and Pattern Recognition, 2001.

[77] R. Kalman. A new approach to linear filtering and prediction problems. Jour-
nal of Basic Engineering, 82:35–45, 1960.

[78] Y. Ke and R. Suthanker. A more distinctive representation for local image
descriptors. In Proceedings of the National Conference on Computer Vision
and Pattern Recognition, 2004.

[79] Zia Khan, Tucker Balch, and Frank Dellaert. Mcmc-based particle filtering
for tracking a variable number of interacting targets. Pattern Analysis and
Machine Intelligence, 27(11):1805–1918, November 2005.

[80] Seon Joo Kim and Marc Pollefeys. Radiometric alignment of image sequences.
In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2004.

[81] A. Kokaram, B. Collis, and S. Robinson. A Bayesian framework for recur-
sive object removal in movie post-production. In Proceedings of the IEEE
International Conference on Image Processing, 2003.

[82] A.C. Kokaram, B. Collis, and S. Robinson. Automated rig removal with
bayesian motion interpolation. IEEE Proc. - Vision, Image and Signal Pro-
cessing, 152(4):407–414, August 2005.

[83] Anil Kokaram. Practical, unified, motion and missing data treatment in de-
graded video. J. Math. Imaging Vis., 20(1-2):163–177, 2004.

[84] Nikos Komodakis and Georgios Tziritas. Image completion using global opti-
mization. In Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2006.

[85] T. Korah and C. Rasmussen. PCA-based recognition for efficient inpainting.
In Proc. Asian Conf. Computer Vision, 2006.

[86] Thommen Korah and Christopher Rasmussen. Improving spatiotemporal in-
painting with layer appearance models. In International Symposium on Visual
Computing, 2006.

169

[87] S. Kumar, M. Biswas, and T. Nguyen. Spatio-temporal texture synthesis and
image inpainting for video applications. In Proceedings of the IEEE Interna-
tional Conference on Image Processing, 2005.

[88] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture opti-
mization for example-based synthesis. ACM Transactions on Graphics, SIG-
GRAPH, August 2005.

[89] Vivek Kwatra, Arno Schdl, Irfan Essa, Greg Turk, and Aaron Bobick. Graph-
cut textures: Image and video synthesis using graph cuts. ACM Transactions
on Graphics, SIGGRAPH, 22(3):277–286, July 2003.

[90] F. De la Torre and M. Black. A framework for robust subspace learning. Int.
J. Computer Vision, 54 (Aug 2003):117–142, 2003.

[91] S. Lee and Y. Liu. Psu Near-Regular Texture Database. Available
at http://vivid.cse.psu.edu/texturedb/gallery/. Accessed November,
2006.

[92] Sung Chun Lee and Ram Nevatia. Extraction and integration of window in
a 3d building model from ground view images. Computer Vision and Pattern
Recognition, 02:113–120, 2004.

[93] T. Lee. Image representation using 2D Gabor wavelets. IEEE Trans. Pattern
Analysis and Machine Intelligence, 18(10):959–971, 1996.

[94] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by track-
ing geometric beacons. IEEE Trans. Robotics and Automation, 7(3):376–382,
1991.

[95] Marius Leordeanu and Martial Hebert. A spectral technique for correspon-
dence problems using pairwise constraints. In International Conference of
Computer Vision (ICCV), volume 2, pages 1482 – 1489, October 2005.

[96] Thomas K. Leung and Jitendra Malik. Detecting, localizing and grouping
repeated scene elements from an image. In Proc. of European Conference on
Computer Vision (ECCV), 1996.

[97] Thomas K. Leung and Jitendra Malik. Recognizing surfaces using three-
dimensional textons. In International Conference on Computer Vision
(ICCV), 1999.

[98] S. Z. Li. Markov random field modeling in computer vision. Springer-Verlag,
1995.

170

[99] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum.
Real-time texture synthesis by patch-based sampling. ACM Transactions on
Graphics, 20:127–150, 2001.

[100] W. Lin and Y. Liu. Tracking dynamic near-regular textures under occlusions
and rapid movements. In Proceedings of the European Conference on Computer
Vision, 2006.

[101] Wen-Chieh Lin and Yanxi Liu. Tracking dynamic near-regular textures under
occlusion and rapid movements. In 9th European Conference on Computer
Vision, 2006.

[102] Lingyun Liu and Ioannis Stamos. Automatic 3d to 2d registration for the
photorealistic rendering of urban scenes. In CVPR ’05: Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2005.

[103] Lingyun Liu, Ioannis Stamos, Gene Yu, George Wolberg, and Siavash Zokai.
Multiview geometry for texture mapping 2d images onto 3d range data. In
CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 2293–2300, 2006.

[104] Yanxi Liu, Robert Collins, and Yanghai Tsin. A computational model for pe-
riodic pattern perception based on frieze and wallpaper groups. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(3):354 – 371, March
2004.

[105] Yanxi Liu, Wen-Chieh Lin, and James H. Hays. Near regular texture anal-
ysis and manipulation. ACM Transactions on Graphics (SIGGRAPH 2004),
23(3):368 – 376, August 2004.

[106] Yanxi Liu, Yanghai Tsin, and Wen-Chieh Lin. The promise and perils of
near-regular texture [publication grayscale version]. International Journal of
Computer Vision, 62(1-2):145 – 159, April 2005.

[107] Le Lu, Kentaro Toyama, and Gregory D. Hager. A two level approach for scene
recognition. In Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2005.

[108] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo
from maximally stable extremal regions. In Proceedings of the British Machine
Vision Conference, 2002.

171

[109] T. Matsuyama, S. Miura, and M. Nagao. A structural analysis of natural tex-
tures by fourier transformation. In Proceedings of the International Conference
on Pattern Recognition, 1982.

[110] H. Mayer and S. Reznik. Building faade interpretation from image sequences.
In Proc. of the ISPRS Workshop CMRT 2005 - Object Extraction for 3D City
Models, Road Databases and Traffic Monitoring - Concepts, Algorithms and
Evaluation, 2005.

[111] H. Mayer and S. Reznik. Mcmc linked with implicit shape models and plane
sweeping for 3d building facade interpretation in image sequences. In Pho-
togrammetric Computer Vision (PCV06), 2006.

[112] Pragyana Mishra. Image and Depth Coherent Surface Description. Ph.D.
dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
May 2005.

[113] M. Morgan and K. Tempeli. Automatic building extraction from airborne
laser scanning data. In 19th Int’l Soc. Photogrammetry and Remote Sensing
Congress (ISPRS), 2000.

[114] Pascal Mller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van
Gool. Procedural modeling of buildings. ACM Transactions on Graphics
(SIGGRAPH ’06), 25(3):614–623, 2006.

[115] Pascal Mller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based
procedural modeling of facades. In Proceedings of ACM SIGGRAPH 2007,
New York, NY, USA, 2007. ACM Press.

[116] Maan E. El Najjar and Philippe Bonnifait. A road-matching method for pre-
cise vehicle localization using belief theory and kalman filtering. Autonomous
Robots, 19:173–191, 2005.

[117] R. M. Neal. Probabilistic inference using markov chain Monte Carlo methods.
Technical Report CRG-TR-93-1, University of Toronto, 1993.

[118] H. Norbert and B. Claus. Generation of 3d city models from airborne
laser scanning data. In 3rd European Assoc. Remote Sensing Laboratories
(EARSEL) Workshop Lidar Remote Sensing of Land and Sea, A.A. Balkema,
1997.

[119] F. Odone, A. Fusiello, and E. Trucco. Layered representation of a video shot
with mosaicing. Pattern Analysis and Applications, 5:296–305, 2002.

172

[120] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press,
1987.

[121] K. Patwardhan, G. Sapiro, and M. Bertalmo. Video inpainting of occluding
and occluded objects. In IEEE International Conference on Image Processing
(IEEE-ICIP), 2005.

[122] P. Perez. Markov random fields and images. Technical Report 1196, Irisa,
July 1998.

[123] P. Perez, A. Blake, and M. Gangnet. Jetstream: Probabilistic contour ex-
traction with particles. In Proc. Int. Conf. Computer Vision, pages 524–531,
2001.

[124] P. Perez, M. Gangnet, , and A. Blake. Patchworks: Example-based region
tiling for image editing. Technical report, Microsoft Research Report TR-
2004-04, 2004.

[125] P. Perez, M. Gangnet, and A. Blake. Poisson image editing. In ACM Trans-
actions on Graphics (SIGGRAPH’03), pages 313–318, 2003.

[126] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops,
and R. Koch. Visual modeling with a hand-held camera. Int. J. Computer
Vision, 59(3):207–232, 2004.

[127] Marc Pollefeys, Reinhard Koch, and Luc Van Gool. Self-calibration and metric
reconstruction in spite of varying and unknown internal camera parameters.
In ICCV ’98: Proceedings of the Sixth International Conference on Computer
Vision, page 90, Washington, DC, USA, 1998. IEEE Computer Society.

[128] Kari Pulli, Habib Abi-Rached, Tom Duchamp, Linda G. Shapiro, and Werner
Stuetzle. Acquisition and visualization of colored 3d objects. In International
Conference on Pattern Recognition (ICPR ’98), 1998.

[129] C. Rasmussen. Grouping dominant orientations for ill-structured road fol-
lowing. In Proceedings of the National Conference on Computer Vision and
Pattern Recognition, 2004.

[130] C. Rasmussen and T. Korah. On-vehicle and aerial texture analysis for vision-
based desert road following. In IEEE International Workshop on Machine
Vision for Intelligent Vehicles, 2005.

[131] C. Rasmussen and T. Korah. Spatiotemporal inpainting for recovering texture
maps of partially occluded building facades. In IEEE Int. Conf. on Image
Processing, 2005.

173

[132] Realviz. Realviz ImageModeler V4.0 product information.
http://www.realviz.com/.

[133] Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmen-
tation. In Proc. 9th Int’l. Conf. Computer Vision, volume 1, pages 10–17,
2003.

[134] Stephan A Roth, Bradley Hamner, Sanjiv Singh, and Myung Hwangbo. Re-
sults in combined route traversal and collision avoidance. In International
Conference on Field & Service Robotics (FSR ’05), July 2005.

[135] C. Rother, V. Kolmogorov, and A. Blake. Grabcut - interactive foreground
extraction using iterated graph cuts. In SIGGRAPH, 2004.

[136] S. Roweis. EM algorithms for PCA and SPCA. In Advances in Neural Infor-
mation Processing Systems, 1997.

[137] F. Schaffalitzky and A. Zisserman. Geometric grouping of repeated elements
within images. In Proceedings of the 9th British Machine Vision Conference,
Southampton, 1998.

[138] S. Se, D. Lowe, and J. Little. Vision-based mobile robot localization and
mapping using scale-invariant features. In IEEE International Conference on
Robotics and Automation (ICRA), 2001.

[139] V. Sequeira and J. Goncalves. 3d reality modelling: photo-realistic 3d models
of real world scenes. In 3D Data Processing Visualization and Transmission,
pages 776–783, 2002.

[140] J. Shi and C. Tomasi. Good features to track. In Proceedings of the National
Conference on Computer Vision and Pattern Recognition, 1994.

[141] David Silver, Boris Sofman, Nicolas Vandapel, James Bagnell, and An-
thony (Tony) Stentz. Experimental analysis of overhead data processing to
support long range navigation. In IEEE International Conference on Intelli-
gent Robots and Systems (IROS), pages 2443 – 2450, October 2006.

[142] Sanjiv Singh, Reid Simmons, Trey Smith, Anthony (Tony) Stentz, Vandi
Verma, Alex Yahja, and Kurt Schwehr. Recent progress in local and global
traversability for planetary rovers. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2000. IEEE, April 2000.

[143] S. Soatto, G. Doretto, and Y. N. Wu. Dynamic textures. In Proceedings of
the International Conference on Computer Vision, volume 2, 2001.

174

[144] Kevin Sookocheff and David Mould. One-click lattice extraction from near-
regular texture. In GRAPHITE ’05: Proc. of Intl. Conf. on Computer graphics
and interactive techniques in Australasia and South East Asia, pages 265–268,
New York, NY, USA, 2005. ACM Press.

[145] J. Spletzer and C. Taylor. A framework for sensor planning and control with
applications to vision guided multi-robot systems. In Proceedings of the Na-
tional Conference on Computer Vision and Pattern Recognition, 2001.

[146] Ioannis Stamos. Geometry and Texture Recovery of Scenes of Large Scale:
Intergration of Range and Intensity Sensing. Ph.D. dissertation, Columbia
University, 2001.

[147] Chris Stauffer and W. Eric L. Grimson. Learning patterns of activity using
real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):747–757,
2000.

[148] J. Sun, W. Zhang, X. Tang, and H. Shum. Background cut. In Proceedings of
the European Conference on Computer Vision, 2006.

[149] Jian Sun, Lu Yuan, Jiaya Jia, and Heung-Yeung Shum. Image completion with
structure propagation. ACM Transactions on Graphics, 24:861–868, 2005.

[150] Y. Sun, J. K. Paik, A. Koschan, and M. A. Abidi. 3d reconstruction of indoor
and outdoor scenes using a mobile range scanner. In International Conference
on Pattern Recognition (ICPR’02), 2002.

[151] S. Syed and M. E. Cannon. A fuzzy logic-based map matching algorithm for
vehicle navigation systems in urban canyons. In National Technical Meeting
of The Institute of Navigation, San Diego, 2004.

[152] R. Szeliski. Video mosaics for virtual environments. IEEE Computer Graphics
and Applications, 16(2):22–30, 1996.

[153] Franck Taillandier. Texture and relief estimation from multiple georeferenced
images. Master’s thesis, DEA Algorithmique, Ecole Polytechnique, Paris 6&7,
ENS-Cachan, and ENS-Ulm, 2000.

[154] Ashit Talukder and David P. Casasent. Multiscale gabor wavelet fusion for
edge detection in microscopy images. In Harold H. Szu, editor, Wavelet Ap-
plications V, volume 3391, pages 336–347. SPIE, 1998.

[155] Hai Tao, Harpreet S. Sawhney, and Rakesh Kumar. A global matching frame-
work for stereo computation. In International Conference on Computer Vision
(ICCV01), 2001.

175

[156] S. Teller. Scalable, controlled image capture in urban environments. Technical
Report MIT LCS Technical Report 825, Massachusetts Institute of Technol-
ogy, 2001.

[157] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg, M. Jethwa, and N. Mas-
ter. Calibrated, registered images of an extended urban area. Int. J. Computer
Vision, 53:93–107, 2003.

[158] S. Thrun. Particle filters in robotics. In Proceedings of the 17th Annual
Conference on Uncertainty in AI (UAI), 2002.

[159] T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto. Making good features
to track better. In Proceedings of the National Conference on Computer Vision
and Pattern Recognition, pages 178–183, 1998.

[160] Paul Tompkins. Mission-Directed Path Planning for Planetary Rover Explo-
ration. Ph.D. dissertation, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, May 2005.

[161] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers:. Principles and practice
of background maintenance. In Proc. Int. Conf. Computer Vision, 1999.

[162] A. Turina, T. Tuytelaars, and L. Van Gool. Efficient grouping under perspec-
tive skew. In Proceedings of the National Conference on Computer Vision and
Pattern Recognition, 2001.

[163] M. Turk and A. Pentland. Face recognition using eigenfaces. In Proceedings of
the National Conference on Computer Vision and Pattern Recognition, 1991.

[164] F. van den Heuvel. Automation in Architectural Photogrammetry; Line-
Photogrammetry for the Reconstruction from Single and Multiple Images.
Ph.D. dissertation, Delft University of Technology, Delft, The Netherlands,
2003.

[165] M. Varma and A. Zisserman. A statistical approach to texture classification
from single images. International Journal of Computer Vision: Special Issue
on Texture Analysis and Synthesis, 62(1–2):61–81, April 2005.

[166] J. Wang and E. Adelson. Representing moving images with layers. IEEE
Trans. Image Processing, 3(5):625–638, 1994.

[167] Jingbin Wang, Erdan Gu, and Margrit Betke. Mosaicshape: Stochastic region
grouping with shape prior. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005.

176

[168] T. Werner and A. Zisserman. Model selection for automated architectural
reconstruction from multiple views. In Proceedings of the British Machine
Vision Conference, 2002.

[169] T. Werner and A. Zisserman. New techniques for automated architecture re-
construction from photographs. In Proceedings of the 7th European Conference
on Computer Vision, Copenhagen, Denmark, volume 2, pages 541–555, 2002.

[170] Y. Wexler, A. Fitzgibbon, and A. Zisserman. Bayesian estimation of layers
from multiple images. In Proceedings of the European Conference on Computer
Vision, 2002.

[171] Y. Wexler, E. Shechtman, and M. Irani. Space-time video completion. In Pro-
ceedings of the National Conference on Computer Vision and Pattern Recog-
nition, 2004.

[172] J. Winn, A. Criminisi, and T. Minka. Object categorization by learned uni-
versal visual dictionary. In Proceedings of the Tenth IEEE International Con-
ference on Computer Vision (ICCV’05) Volume 2, 2005.

[173] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. In-
stant architecture. ACM Transactions on Graphics, 22:669–677, 2003.

[174] J. Xiao and M. Shah. Motion layer extraction in the presence of occlusion using
graph cut. In Proceedings of the National Conference on Computer Vision and
Pattern Recognition, 2004.

[175] L. Xu and A. Yuille. Robust principal component analysis by self-organizing
rules based on statistical physics approach. IEEE Transactions on Neural
Networks, 6(1):131 – 143, 1995.

[176] Liron Yatziv, Guillermo Sapiro, and Marc Levoy. Lightfield completion. In
International Conference on Image Processing, pages 1787–1790, 2004.

[177] Suya You, Jinhui Hu, Ulrich Neumann, and Pamela Fox. Urban site modeling
from lidar. In Computational Science and Its Applications ICCSA03, 2003.

[178] A. Yuille and J. Coughlan. Fundamental limits of Bayesian inference: Order
parameters and phase transitions for road tracking. IEEE Trans. Pattern
Analysis and Machine Intelligence, 22(2):160–173, 2000.

[179] W. Zhang and J. Kosecka. Extraction, matching and pose recovery based on
dominant rectangular structures. In High Level Knowledge in Vision Work-
shop, ICCV, 2003.

177

[180] B. Zhao and J. Trinder. Integrated approach based automatic building ex-
traction. In 19th Int’l Soc. Photogrammetry and Remote Sensing Congress
(ISPRS), 2000.

[181] H. Zhao and R. Shibasaki. Reconstructing a textured cad model of an ur-
ban environment using vehicle-borne laser range scanners and line cameras.
Machine Vision and Applications, 14(1):35–41, 2003.

[182] Wenyi Zhao, David Nister, and Steve Hsu. Alignment of continuous video onto
3d point clouds. IEEE Trans. Pattern Anal. Mach. Intell., 27(8):1305–1318,
2005.

178

