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Abstract. We introduce the problem of autonomous trail following with-
out waypoints and present a vision- and ladar-based system which keeps
to continuous hiking and mountain biking trails of relatively low human
difficulty. Using a RANSAC-based analysis of ladar scans, trail-bordering
terrain is classified as belonging to one of several major types: flat ter-
rain, which exhibits low height contrast between on- and off-trail regions;
thickly-vegetated terrain, which has corridor-like structure; and forested
terrain, which has sparse obstacles and generally lower visual contrast.
An adaptive color segmentation method for flat trail terrain and a height-
based corridor-following method for thick terrain are detailed. Results are
given for a number of autonomous runs as well as analysis of logged data,
and ongoing work on forested terrain is discussed.

1 Introduction

Navigationally-useful linear features along the ground, or trails, are ubiquitous
in manmade and natural outdoor environments. Spanning carefully engineered
highways to rough-cut hiking tracks to above-ground pipelines to rivers and
canals, they “show the way” to unmanned ground or aerial vehicles that can
recognize them. Built trails also typically “smooth the way,” whether by paving,
grading steep slopes, or removing obstacles. An ability to recognize and fol-
low trail subtypes amenable to wheeled vehicles such as dirt, gravel, and other
marginal roads, as well as true hiking trails, is a vital skill for outdoor mo-
bile robot navigation. The alternative of cross-country route-finding over desert,
forested, or mountainous terrain is fraught with difficulties [1-5]. In contrast, a
trail is a visibly-marked, precomputed plan that can be followed to lessen dan-
ger, minimize energy expenditure, save computation time, and ease localization.
The routes given to competitors in the 2004 and 2005 DARPA Grand Chal-
lenge Events (GCE) generally followed trails for this very reason. However, as
they were densely “marked” with human-chosen GPS waypoints, the burden of
sensor-based route-finding was lessened considerably for the robots.

In this paper we present a component of a larger project tackling the problem
of enabling UGVs to robustly and quickly follow a wide variety of trails without



Fig. 1. Our robot autonomously following flat and thickly vegetated trail segments
(see text for definitions)

any waypoints. The subtasks necessary for robust trail-following may be divided
into three categories:

Trail keeping Analogous to the sense of “lane keeping” from autonomous
road following, keeping to a trail involves determining the shape and bound-
aries of a non-branching, non-terminating trail that the robot is already on, and
controlling the platform to move along it. For discontinuous trails marked by
blazes, footprints, or other sequences of discrete features, the underlying task is
successive guided search rather than segmentation.

Trail negotiation Because trails cannot be assumed to be homogeneously-
surfaced free space (as with paved roads lacking other cars), trail negotiation
adds vigilance for and responses to in-trail hazards. It includes adjusting direc-
tion to skirt solid obstacles such as rocks and fallen logs, as well as slowing,
shifting, and other control policy modifications to suite different trail surface
materials (e.g., sand, mud, ice) and terrain types (e.g., flat, bumpy, steep slope,
etc.).

Trail finding Finding entails identifying trail splits and dead-ends that vi-
olate the assumptions of the trail keeper, as well as searching for trails from a
general starting position, whether using onboard sensors or a priori map and
aerial data.

The trail-following component reported on here is a joint image and ladar
algorithm for keeping to hiking/mountain biking trails which are continuous and
relatively free of in-tread hazards. Our platform is a Segway RMP 400 (shown in
Figure 1) with a single rigidly-mounted SICK LMS-291 ladar and a color video
camera. The robot is controlled via Player client/server software [6].

The types of terrain and vegetation surrounding a hiking trail have a major
bearing on the perceptual difficulty of the trail-following task. For simplicity, in
this work we assume that trail-bordering terrain types fall into three common
categories (examples are shown in Figure 2):



Fig. 2. Examples of main terrain types bordering trail segments considered in this
paper. Synchronized ladar scans are shown at right in ladar coordinates. Each arc
represents a 1 m range difference; radial lines are 15 degs. apart

Flat Off-trail regions such as grassy fields that have generally poor height
contrast with the trail tread, making structural cues from ladar less reliable
than appearance cues from the camera. Depending on the season, color contrast
between the two regions may be very strong (e.g., in summer) or relatively weak
(winter).

Thick Trail segments bordered by dense vegetation such as bushes, trees, or
tall grass which form virtual corridors that are highly amenable to ladar cues.
Image-based segmentation is often complicated by shadow and glare issues.

Forested Areas under canopy with more widely-spaced obstacles like tree
trunks. Here the correlation between obstacle distribution and trail direction is
typically weak and visual contrast between on- and off-trail regions is also often
poor, as they may both be largely dirt or leaf-covered.

One of our key contributions is a method for recognizing which of the above
categories a trail segment belongs to in order to discretely switch to a different
vision-based or ladar-based algorithm better suited to that terrain.

In the next several sections, we describe our system’s methods for terrain
type classification; an adaptive, vision-based trail segmentation technique for
flat terrain; and a ladar-based approach to corridor following in thick terrain.
Our results show the robot successfully operating autonomously using these
techniques in an integrated fashion. In the conclusion we discuss the next steps
necessary to extend the system to further terrain types and increase performance
and safety.



Fig. 3. Ladar-based terrain classification. Left and right edge estimates on thickly-
vegetated trail section are shown in green and blue, respectively. The yellow line is the
gap direction estimate (explained in Section 4). Saturation of the plotted ladar points
is proportional to absolute height in robot coordinates.

2 Terrain Type Classification

Our robot’s ladar is mounted about 0.5 meters off the ground and pitched down
10 degrees. Thus, on planar ground the ladar beam sweeps across the ground
nearly s = 3 m in front of the robot. The scans are set to a maximum range of
about 8 m at 0.5 degree resolution over an angular range of 180 degrees. The
general strategy behind mounting the ladar in this manner is to obtain data
about tall obstacles on the robot’s flanks as well as information about the profile
of the ground just ahead, including smaller bumps and negative hazards.

Both Stanford and Carnegie-Mellon (CMU), which collectively accounted
for the top three robots in the 2005 GCE, relied exclusively on multiple ladars
for steering decisions (Stanford used vision as an input to speed control) [7, 8].
However, we assert that ladar alone is not sufficient for successful trail following
in each kind of terrain defined above. Stanford’s and CMU’s approaches worked
because the provided GPS waypoints gave complete navigational information,
making ladar only necessary for local obstacle avoidance. With no waypoints for
guidance, in some areas—particularly flat terrain—ladar is virtually useless to
keep the robot on track and appearance cues must be exploited for navigation.
As can be seen in the “flat” example of Figure 2, the trail is very difficult to
discern in one ladar scan (especially with a large rut to its left) but obvious in
the camera image.

Although ladar may be inadequate for navigation in certain kinds of terrain,
it can be very informative about which terrain type the robot is on. The basic
idea is that the gross shape of a single scan is very different depending on which
terrain type is present. On level, planar ground, the scan is a horizontal line
noisified by grass, ruts, and other features in flat terrain environments. With
the range maximum we use for the ladar, nonlinearities due to curvature of the
underlying ground are negligible. If the robot is on a sideslope (with the ground



higher on one side and lower on the other), then the line is simply diagonal with
a slight jog in the middle corresponding to the level cross-section of trail. If the
robot is traveling along the top of a slight ridge or the bottom of a slight valley,
the scan shape will appear as a wide V or A, respectively.

Ladar scans taken in thickly-vegetated segments with their corridor-like struc-
ture, on the other hand, are characterized by two more nearly parallel linear clus-
ters (as in the “thick” example in Figure 2). These are the “walls” of the corridor
of foliage that the robot should follow. The difference between this configura-
tion and the A shape of some flat terrain is the acuteness of angle between the
lines. In other words, for flat and thick terrain situations a reasonable fraction
of the ladar data should be well-described by one or two lines. Forested terrain
segments are the leftover category, characterized by jumbled ladar scans lacking
enough coherent structure to fit a line or lines with any significant support.

Based on these observations, our method for categorizing ladar scan shapes
into terrain types is as follows. Let the x axis in robot coordinates be defined by
the robot’s front wheel axle, with +x to the right and —z to the left of the robot
center. On each new scan, two RANSAC robust line-fitting procedures [9] are
performed in succession. The first is a nominal left edge fit, on which a constraint
is enforced that the estimated line must intersect the x axis at a point xy < 0.
If no line is found with over some fraction f of inliers (we used 20% here) in a
reasonable number of samples, the left edge is considered not found. The second
RANSAC procedure is a right edge fit run on the set of original ladar scan points
minus the left edge inliers and subject to the constraint that it intersect the x
axis at a point g > 0. If f (with respect to the number of original points) is
not exceeded by any line, then the right edge is not found. Note that |zp| or
|xg| can be very large, allowing a virtually horizontal line fit.

After running these two fitting operations, if neither a left edge nor a right
edge is found, the current terrain is considered forested. If only one edge is found,
the terrain is considered flat!. If both edges are found, the terrain is considered
flat if zp — 2z > 7 and thick otherwise (7 = 4.0 m was used for the runs in this
paper).

Somewhat surprisingly, running RANSAC independently on each successive
frame yields fairly consistent estimates of the left and right edge lines. We smooth
what noise there is with temporal filtering of the terrain classification itself via
majority voting over a recent-history buffer.

An example of left and right edge estimates on a thick terrain scene that
would be especially difficult for a visual method is shown in Figure 3.

3 Flat Terrain: Image-based Trail Segmentation

On flat terrain the preferred sensory modality is camera imagery, since on- vs.
off-trail height contrasts are mostly too small for reliable ladar discrimination.

! We currently do not account for the possibility of thick foliage on only one side
of the trail (which would permit simple “wall-following”), but this could easily be
incorporated into the classification logic



Though the trails we are considering are engineered for walking or bike-riding
people only and thus are too small for road-legal cars or trucks, an obvious
approach is to consider the task as just a scaled-down version of road follow-
ing. Vision-based road following has been thoroughly studied on paved and/or
painted roads with sharp edges [10-13], but hiking trails rarely have these. How-
ever, region-based methods using color or texture measured over local neighbor-
hoods to measure road vs. background probabilities work well when there is a
good contrast for the cue chosen, regardless of the raggedness of the road border
[14,13,15-17].

The most notable recent work in this area is Stanford’s 2005 GCE road seg-
mentation method [18]. Specifically, their approach relies on a driveability map
(depicted in Figure 4(a)) accumulated over many timesteps and integrated from
multiple ladars. A quadrilateral is fit to the largest free region in front of the
vehicle in the latest map, and this is projected into the image as a training re-
gion of positive road pixel instances (Figure 4(b)). The method of modeling road
appearance is with a mixture of k£ Gaussians in RGB space (with temporal adap-
tation) and does not require negative examples: new pixels are classified as road
or non-road solely based on a thresholded distance to the current color model.
This follows the framework of [19]’s original image-based obstacle avoidance al-
gorithm, which used a fixed free region and a histogram-based color model.

For several reasons, neither [18] nor [19] is directly applicable to trail following
on flat terrain. First, the ladar is not sufficient for selecting an image region
belonging to the trail alone because of the lack of height contrast. Secondly,
using a fixed positive example region is problematic because the trail is very
narrow in the camera field of view compared to a road and can curve relatively
sharply. Even in thickly-vegetated terrain, tall foliage does not always grow to
the edge of the trail proper, as Figure 2 shows. In both terrain types, without
very precise adaptive positioning this approach would lead to off-trail pixels
frequently polluting the trail color model .

The very narrowness of the trail suggests a reverse approach: model the off-
trail region or background with an adaptive sampling procedure and segment the
trail as the region most dissimilar to it. In general the background is less visually
homogeneous than the trail region and thus more difficult to model, but in our
testing area it is not overly so. Under the assumption that the robot is initially
on the trail and oriented along it, the background color model is initialized with
narrow rectangular reference areas on the left and right sides of the image as
shown in Figure 2. These areas extend from the bottom of the image to a nominal
horizon line which excludes sky pixels and more distant landscape features in
order to reduce background appearance variability.

Following the method of [19], a color model of the off-trail region is con-
structed from the RGB values of the pixels in the reference areas for each new
image as a single 3-D histogram with a few bins per channel. The entire image
below the horizon is then classified as on- or off-trail by measuring each pixel’s
color similarity to the background model and thresholding. In particular, if a
particular pixel’s histogram bin value is below 25% of the maximum histogram
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Fig. 4. (a,b) Stanford’s approach to obtaining road labels (from [18]). (a) Overhead
map of obstacle space and free space from multiple ladars integrated over time. Note
quadrilateral fit to free space in front of vehicle; (b) Quadrilateral projected to image,
with result of road segmentation overlaid. (¢) Our histogram color classification method
for trail segmentation example (frame from one autonomous run). Left and right ref-
erence areas are outlined by yellow rectangles; these are the regions from which the
non-trail appearance model is built. Pixels classified as on-trail (after density filtering)
are highlighted in green. The lateral median of the segmented trail region is indicated
by the vertical orange line, which the robot steers to center. The isolated green blobs
are gray rocks misclassified as trail.

bin value, it is considered a trail pixel. To reduce noisiness in this initial segmen-
tation, this image is filtered using a 3 x 3 majority filter. The resulting binary
image contains the pixels we consider most likely to belong to the trail (pixels
shaded green in Figure 2). Using the image output from the pixel majority filter
the trail image center (the orange line in Figure 2) is estimated as the median x
value of the filtered trail pixels. This is converted to a trail direction 6 with the
camera calibration; steering follows a proportional control law.

The reference areas are adapted to exclude the trail region based on a robust
estimate of the trail width using the maximum absolute deviation of the lower



section of filtered trail pixels plus a safety margin. If one is squeezed too thin by
the trail moving to one side, it is not used. If the trail region is too small or too
large, the reference areas are reset to their defaults.

4 Thick Terrain: Ladar-based Corridor Following

When the terrain classifier judges the current segment to be thickly-vegetated,
purely ladar-based trail following is a very robust option. An obvious cue for
which direction 0 to steer the robot comes from the already-computed left and
right RANSAC edge lines, as their intersection would seem to be a straightfor-
ward indicator of the trail corridor direction. However, because of the “nearsight-
edness” of our ladar configuration, the edge estimates can vary somewhat due
to locally nonlinear structures such as bulges or gaps in foliage lining the trail.
While these variations are generally not significant enough to confuse the terrain
classifier, they contribute to undesirable instability in intersection-derived trail
direction estimates.

A more reliable alternative is to pick the # within an angular range in front
of the robot associated with the farthest obstacle at distance r. Similar in spirit
to vector field histograms [20], the robot avoids nearby obstacles comprising
the walls on either side by seeking the empty gap between them. To filter out
stray ladar beams which sometimes penetrate deep into trail-adjacent foliage,
we calculate obstacle distances for candidate directions using the nearest return
within a sliding robot-width window. A simple particle filter [21] is used to
temporally smooth 6 and r estimates. A proportional control law is then used
to generate a steering command.

The farthest-obstacle distance r is used to modulate robot speed. If the robot
is traveling over planar ground r should roughly equal the sweep distance s
(defined in Section 2 above). Thus, deviations of r from s indicate that the
robot is currently pitching up or down or approaching a dip or bump. In any of
these cases, the robot assumed to be on bumpy ground and the speed is lowered
proportionally to |r—s| (see [22] for a machine learning approach to this problem
at much higher speeds).

5 Results

We developed and tested our algorithms on camera and ladar data that were
collected while driving the robot around a 1.5 km loop trail used by hikers and
mountain bikers and located in a state park. The trail varies from approximately
0.3 m to 2 m wide and is mostly hard-packed dirt with few sizeable rocks or
roots within the trail region. Altitude along the trail gradually changes over
about a 10 m range, with a few notable humps and dips. Overall, it would
be rated as an “Easy” trail under the system of the International Mountain
Bicycling Association [23], which is crafted with wheeled motion in mind and is
a reasonable scale match for our robot. An aerial view of the entire trail loop is



Fig. 5. Aerial view of trail loop where testing was conducted. Colors indicate primary
vegetation types bordering trail segments: green marks predominantly flat segments,
yellow shows where there was thick, wall-like foliage along the trail, and red shows
forested trail segments.

shown in Figure 5, with the flat segments drawn in green, the thick segments in
yellow, and the forested segments in red.

Image histogram-based segmentation as described above was very successful
for autonomous guidance of the robot along virtually the entire top flat section
of the trail shown in Figure 52. The robot covered a distance of several hundred
meters on an initial eastward leg until it entered a narrow, thickly-vegetated seg-
ment and was manually turned around. The histogram method for background
color modeling is somewhat sensitive to illumination variation, and there are
several spots in the thick segment where deep shadows would confuse it. The
robot was stopped at the end of the reverse westward journey at the location
pictured in Figure 4(c) because of large rocks very close to the trail. In this “flat”
trail-following mode, the robot had no structural cues for speed control and thus
was set to move at a constant rate of 1.0 m / s. The maximum turning rate was
set to 0.5 radians / s.

Part of the westward leg is illustrated by images taken at 250-frame intervals
in Figure 6. For the most part the segmentation was fairly clean, but there were

2 For all results, the default width of each reference area was % the image width and
the horizon line was fixed at % the image height. The RGB histogram had 16 bins
per channel, and the reference areas were reset if < 1% or > 50% of the image
was classified as trail. Images were captured at a framerate of 5 fps. The processing
resolution after downsampling was 80 x 60; here we are upsampling the logged results
for display
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Fig. 6. Part of completely image-based autonomous run on flat trail section. Image
labels are camera frame numbers

some sections where the bordering grass contained large brown patches and the
color discrimination faltered temporarily, as with frame 1500. When the area
of the segmented region dipped below threshold, the robot no longer “saw” a
trail and would continue without turning. However, because the trail was not
too sharply curved at these points, the adaptive color model recovered in time
to refind the trail and correct the overshoot.

The ladar-based terrain mode classifier worked perfectly throughout the runs
above, switching from flat to thick correctly toward the end of the eastward
leg. This transition is documented in Figure 7 over a sequence of images 100
frames apart. Two strong lines are fit to the ladar data which intersect the robot
baseline less than 7 apart just before frame 300; this switches the controller from
the image segmentation follower to the ladar gap follower. Part of a sequence
further into the thickly-vegetated section with the ladar gap follower running is
shown in Figure 8.

A nearly 16-minute, manually-controlled run on an earlier day showed simi-
larly successful results. The robot was driven along the trail through thick terrain



(the western half of the flat terrain above before grass over 1 m tall was cut for
hay), followed by flat terrain (short grass in the eastern half), then into the thick
terrain alley which begins at frame 300 in Figure 7. Both terrain transitions were
recognized appropriately and with no other, false switches, and trail tracking was
qualitatively accurate. Quantitatively, the trail follower’s output steering com-
mand predicted the logged human driver’s steering command fairly well, with a
measured Pearson’s correlation coefficient of p = 0.82 for the histogram-based
flat mode and p = 0.75 for the ladar-based thick mode (p < 0.001)3.

6 Conclusion

We have presented a vision- and ladar-based system for following hiking trails
that works well on a variety of flat and thickly-vegetated terrain.

Clearly, the next area needing attention is a robust technique for tackling
forested trail segments. As the visual discrimination task is harder, more sophis-
ticated classification methods such as support vector machines and more detailed
appearance models including texture [24] may be necessary, though at some cost
in speed. Classifying patches or superpixels [25, 2] rather than individual pixels
would also most likely yield more geometrically coherent segmentations. Incor-
porating a whole-trail shape prior [26] into the segmentation process, perhaps
with recursive updating, would also help isolate the trail region in an otherwise
confusing visual environment.

Some basic trail negotiation methods are necessary for robot safety, as the
system currently has no mechanism for discovering or avoiding in- or near-trail
hazards. Although nearly all of the trail tread in our testing area is obstacle-
free, several sections contain roots or are bordered by nearby tree trunks or rocks
(as in Figure 4)(c). Existing techniques for visual feature detection and terrain
classification [27,2] should help here, but the problem of discriminating soft
obstacles like grass and twigs which can be pushed through from hard obstacles
like rocks and logs that cannot is a classically difficult one [4].
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