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Abstract— We present a vision- and ladar-based ap-
proach to autonomous driving on rural and desert roads
that has been tested extensively in a closed-loop system.
The vision component uses Gabor wavelet filters for texture
analysis to find ruts and tracks from which the road
vanishing point can be inferred via Hough-style voting,
yielding a direction estimate for steering control. The
ladar component projects detected obstacles along the road
direction onto the plane of the front of the vehicle and
tracks the 1-D obstacle “gap” presumed due to the road
to yield a lateral offset estimate. Several image- and state-
based tests to detect failure conditions such as off-road
poses (i.e., there is no road to follow) and poor lighting
due to sun glare or distracting shadows are also explained.
The system’s efficacy is demonstrated with analysis of
diverse logged data including from the 2005 DARPA Grand
Challenge, as well as tests with full control of a vehicle
over 15 km of difficult roads at up to 37 km/h with no
waypoints.

I. INTRODUCTION

The running of the DARPA Grand Challenge Event
(GCE) desert robot races in March, 2004 and October,
2005 [1] heightened interest in the development of
perceptual algorithms for autonomous ground vehicles
to follow “difficult” unpaved paths and roads. Though
there were some off-road portions, nearly all of the
2004 and 2005 GCE courses, as specified by a se-
ries of GPS waypoints, were along dirt roads. The
recent DARPA Urban Challenge in November, 2007
took place almost entirely on roads, and vehicles were
given sparser waypoints, making a visual navigation
capability increasingly paramount. In this paper, we
describe a perceptual module for following marginal as
well as paved roads without waypoints that uses one
grayscale camera in conjunction with a SICK ladar to
rapidly obtain an estimate of the oncoming road area and
transmit appropriate steering and throttle commands to
the vehicle controller.

The module, which we call RoadCompass (in the
spirit of [2], [3]) because it seeks to infer the vehicle’s
orientation relative to the road ahead based on the
vanishing point structure of the image, was developed
to operate on board Team Caltech’s 2005 GCE vehicle
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Fig. 1. (a) Sample sensor configuration on “Alice,” a fully-actuated
Ford E350 with a modified suspension and 4 wheel drive. SICK ladars
are mounted on the bumper and roof; road following camera is one of
stereo pair over windshield; (b) Organization of RoadCompass module
components. The green boxes are the three primary perceptual steps
necessary to build a model of the road region discussed in Sections II-
A, II-B, and II-C. The two yellow diamonds are tests for failure
conditions covered in Section III.

“Alice,” pictured in Figure I(a). As such, RoadCom-
pass was part of a larger system developed by many
others which comprises modules for higher-level nav-
igation, structural map maintenance, off-road steering,
direct control of the vehicle, hardware fault monitoring,
and so on—the complete system is described in [4].
In the 2005 GCE, the ultimate action taken by Alice
in any given situation was a complex function of its
state and sensor inputs that is explained in [4], with
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RoadCompass effectively constituting only one opinion
among many. However, pre-race tests with simplified
versions of the vehicle controller demonstrated Road-
Compass’s ability to successfully control Alice in a
closed-loop fashion over long distances. RoadCompass’s
system components are diagrammed in Figure I(b).

Many complementary strategies for visual road fol-
lowing have been developed based on certain assump-
tions about the characteristics of the road scene. For
example, edge-based methods such as those described
in [5], [6], [7] are often used in relatively urban areas
to identify lane lines or road borders, which are fit
to a model of the road curvature, width, and so on.
These algorithms typically work best on well-engineered
roads such as highways which are paved and/or painted,
resulting in a wealth of high-contrast contours suited for
edge detection. Another popular set of methods for road
tracking are region-based [8], [7], [9], [10], [11]. These
approaches use characteristics such as color or texture
measured over local neighborhoods in order to formulate
and threshold on a likelihood that pixels belong to the
road area vs. the background. When there is a good
contrast for the cue chosen, there is no need for the
presence of sharp or unbroken edges, which aids these
methods on unpaved rural roads.

The original motivation for this work was our empir-
ical finding that many desert roads, being unpaved and
colored similarly to the surroundings, present difficulties
for these approaches because they possess neither strong
edges nor contrasting local characteristics. Figure 2(a)
shows one such road. This image is from a set of
“course examples” made available to entrants in the
2004 GCE (DARPA air-brushed part of the image near
the horizon to obscure location-identifying features).
There is no color difference between the road surface
and off-road areas and no strong edges delimiting it,
as the output of the Matlab canny edge detection
function shows in Figure 2(b). The one characteristic
that seems to define the road is texture, but not in
a locally measurable sense, because there are pebbles,
shadows, and stripes everywhere. Rather, one seems to
apprehend the road easily because of its overall banding
pattern. This banding, due to ruts and tire tracks left
by previous vehicles driven by humans who knew the
way, is aligned with the road direction and thus most
apparent because of the strong grouping cue imposed by
its vanishing point. The percept of the vanishing point is
reinforced by other oriented texture such as road border
intensity edges or painted lines if they are present, and
thus is an almost invariant feature of road images taken
from the driver’s perspective regardless of road width or
surface properties.

A number of researchers have used vanishing points
as global constraints for road following or identification
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Fig. 2. The difficulty of color segmentation or edge detection for
road following: (a) Desert road from 2004 DARPA Grand Challenge
example set; (b) Canny edges of same scene.

of painted features on roads (such as so-called “zebra
crossings,” or crosswalks) [12], [13], [14], [15]. Broadly,
the key to the approach is to use a voting procedure like
a Hough transform on edge-detected line segments to
find points where many intersect. Peaks in the voting
function are good candidates for vanishing points. This
is sometimes called a “cascaded” Hough transform [16]
because the lines themselves may have first been identi-
fied via a Hough transform. Similar grouping strategies
have also been investigated outside the context of roads,
such as in urban and indoor environments rich in straight
lines, in conjunction with a more general analysis of
repeated elements and patterns viewed under perspective
[17], [18].

All of the voting methods for localizing a road’s
vanishing point cited above are based on a prior step
of finding line segments via edge detection. This is
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Fig. 3. Steps of vanishing point localization: (a) Captured road image; (b) Dominant orientation at each pixel ([0, π] radians → [0, 255]
intensity values); (c) Vote function for vanishing point over image region; (d) Distribution of particles and estimated vanishing point location
with horizon line indicated.

unworkable for many desert road scenes because the
road bands are too low-frequency to be explicitly de-
tected. The “Manhattan world” approach outlined in
[2], [19] does not require an edge detection step, but
is not suitable for real-time applications such as au-
tonomous driving. In contrast, RoadCompass uses a fast
and straightforward method (introduced by us in [20]
and extended in [21]) for locating the road’s vanishing
point in such difficult scenes through texture analysis.
Specifically, we replace edge detection with estimates of
the dominant orientation at each location in the image.
These suffice to conduct voting in a similar fashion
and find a vanishing point. Figure 3 shows the steps
of RoadCompass’s output on a sample image.

For a straight road segment on planar ground, there
is a unique vanishing point associated with the road.
Its horizontal image position indicates the road direc-

tion, and its vertical position marks the horizon line
of the road plane. The significance of the estimated
road direction, of course, is that the difference between
it and the vehicle’s current direction of travel implies
the steering adjustment necessary to stay on the road.
However, as the vanishing point is only the image
projection of a tangent to the road curve, there is no
unique vanishing point for curving or undulating road
segments. More detailed texture analysis to extract road
curvature information is possible (and discussed in [20]),
but RoadCompass demonstrates that it is unnecessary
for robust road following at moderate speeds.

In addition to the image-derived road direction infor-
mation, a second key part of RoadCompass is extraction
of the vehicle’s lateral offset from the road midline.
Alignment of vehicle direction with the road direction
does not assure that the vehicle is on the road—only that
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is is moving parallel to it. Without a corrective centering
impulse, the vehicle may drift off of a straight road
over time or cut off or overshoot curves. Image-based
road segmentation is one possible approach here [9],
[11], and we have experimented with several methods
using the vanishing point as a shape constraint [22],
[23]. However, we ultimately found them insufficiently
robust due to sensitivity to the road surface material and
lighting conditions (particularly strong shadows).

Rather, RoadCompass uses an instantaneous map of
the obstacles ahead derived from a SICK LMS ladar to
estimate the lateral offset of the road midline relative
to the vehicle. Considering a 1-D slice through the
map orthogonal to the road direction, the road region
corresponds to an obstacle-free gap between the left
and right road edges. Our strategy is to try to locate
and track this gap so that the vehicle can center itself
while decreasing directional error. Like our vanishing
point method, this approach has no need to tune, learn,
or adapt parameters as the algorithm runs on a variety
of roads. In flat areas where the gap is indistinct because
only visual appearance demarcates the road, drifting due
to imprecise centering is of minimal concern assuming
similar on- and off-road material properties (i.e., both
dirt or both sand).

Trying to extract the road direction directly from
ladar data rather than camera images, while tempting, is
frequently difficult for single scans due to the sparsity
of data provided by one or two SICKs in an outdoor,
desert environment (see, for example, the scenes in
Figure 7). However, we have had some success since
the 2005 GCE using a RANSAC-like approach with
temporal filtering [24], especially in urban scenes. For
the 2005 GCE, we chose to use instantaneous gap
estimates instead of temporally integrating ladar data
before estimation because of a lack of confidence in
the accuracy of Alice’s state estimation. Indeed, it was
a registration error in Alice’s integrated map (not part
of RoadCompass) due to a GPS glitch that was the
primary cause of its race-ending crash [4]. Obviously,
if a reliable, high-precision state estimate is available,
then combining ladar scans over time and processing
this fused representation as described in [25], [26] is
superior at least for road width and offset estimation.

Finally, a critical road-follower state is whether it
currently “sees” a road or not and thus should be trusted.
The 2004 and 2005 GCE courses went through several
roadless areas, though in actuality these were on dry
lake beds where tracks left by previous autonomous and
course official vehicles created virtual roads. Leaving
the road in more difficult terrain would necessitate
falling back to generalized obstacle avoidance and slope
analysis techniques as studied, for example, in [27], [28].

The decision mechanism for making such a switch is

the last component of RoadCompass, along with several
methods for detecting other failure situations related to
poor lighting conditions such as sun glare, distracting
shadows, and overall darkness that may prevent the
module from recognizing a road even if it is on one.
Of course the road locations of most North American
and European highways and urban streets, as well as
many rural roads, have been digitized in vector form,
but digital maps may not cover every obscure desert
path we want to follow. RoadCompass thus includes an
image-based function to discriminate scenes that contain
a strong forward vanishing point—assumed to belong
to a road—from those that do not. We believe that this
provides an additional argument for combining imagery
with ladar data: this decision function, described in
Section III, is significantly more reliable than would be
one based solely on ladar data.

In the next two sections, we will detail the steps
of how RoadCompass estimates road shape, controls
the vehicle, and detects failure conditions. For each of
these components we will present results supporting and
clarifying the techniques used. A concluding “Integrated
Tests” section demonstrates the system’s capabilities as a
whole by analyzing performance over several extended
closed-loop test runs and during the 2005 GCE itself,
both running live on Caltech’s vehicle and on logged
data from another team that finished the course.

II. ROAD SHAPE ESTIMATION

There are three significant stages to road shape esti-
mation which we describe in the following subsections.
First, a texture analysis is performed by computing
dominant texture orientations over the current image.
Second, a linear approximation to the road direction
θroad is measured by having all dominant orientations
in the image vote for a single best road vanishing point.
Finally, the vehicle’s lateral offset δroad from the road
center and the road width wroad are estimated from
ladar data. Two methods of controlling Alice with these
parameters are also covered in a fourth subsection.

A. Dominant Orientations

The dominant orientation θ(p) at pixel p = (x, y)
of an image is the direction that describes the strongest
local parallel structure or texture flow. This is of course
a scale-dependent measure. As we will explain in
more detail in the next subsection, precise estimates
of the dominant orientations are crucial in order to
obtain sharp peaks in the voting objective function and
hence accurately localize the vanishing point. There is
a considerable body of work on estimating dominant
orientations. For example, we may apply a bank of
multi-scale, oriented filters such as steerable filters [29]
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and analyze the maximum responses. Another approach
is to generate a Gaussian pyramid of the image, use
principal components analysis on the set of gradients
within a small window to obtain a consensus direction
at each scale, and then interpolate [30].

We experimented with several approaches to local
orientation estimation, including that of [30], and ob-
served the most qualitatively accurate results on a wide
variety of road images with a bank of Gabor wavelet
filters [31]. Gabor wavelet filters essentially perform
a Gaussian-windowed Fourier analysis on the image
via convolution with a set of kernels parametrized by
orientation θ, wavelength λ, and odd or even phase. To
generate a k × k Gabor kernel (we use k = b 10λ

π c), we
calculate:

ĝodd(x, y, θ, λ) = exp[− 1
8σ2

(4a2 + b2)] sin(2πa/λ)
(1)

where x = y = 0 is the kernel center, a = x cos θ +
y sin θ, b = −x sin θ + y cos θ, σ = k

9 , and the “sin”
changes to “cos” for ĝeven. The actual convolution ker-
nel g is then obtained by subtracting ĝ’s DC component
(i.e., mean value) from itself and normalizing the result
so that g’s L2 norm is 1.

To best characterize local texture properties including
step and roof edge elements at an image pixel I(x, y), we
examine the complex response of the Gabor filter given
by Icomplex(x, y) = (godd ∗I)(x, y)2 +(geven ∗I)(x, y)2

for a set of n evenly spaced Gabor filter orientations. The
dominant orientation θ(x, y) is chosen as the filter ori-
entation which elicits the maximum complex response
at that location.

With a priori knowledge of the distribution of actual
(3-D) road texture wavelengths λroad, the camera focal
length, and the pitch or tilt angle of the camera with
respect to the ground plane, the distribution of perceived
road texture wavelengths in the image λimage could be
established. This information would allow a principled
choice of a range of filter wavelengths to run at each
image location and weights for combining them, with
larger-scale filters being applied toward the bottom of
the image and finer filters used closer to the horizon
line.

However, in the early stages of this work the testing
images came from a variety of uncalibrated cameras
mounted with unknown height and tilt. Furthermore,
the data contain a number of significant departures
from the planar ground assumption. Based on empirical
observation of performance using 4 octave-separated
wavelengths both independently and in combination, we
found that a single wavelength related to the image
dimensions by an ad hoc scaling factor gave good results
at a significant computational savings vs. multi-scale

schemes. Thus, for all of the results in this paper except
where otherwise noted, the image has been scaled via
an image pyramid down to 80 × 60 resolution, the
number of Gabor orientations used is n = 36, and a
single wavelength λ = 4 resulting in a kernel size of
12 × 12 is used. The FFTW Fourier transform library
[32] at single precision is used to calculate dominant
orientations speedily, taking ∼ 55 ms on a 3.0 GHz
Pentium IV for a 160× 120 image.

Figure 3(b) shows the calculated dominant orienta-
tions for the image in Figure 3(a). Gray level intensities
proportional to an estimated angle from 0 to 180 degrees
(in 36 discrete steps) are shown. Observe that most
parallel structure is in the dirt road on the right.

B. Vanishing Point Detection

A central assumption of RoadCompass is that for
most road scenes, especially rural ones, the vanishing
point due to the road is the only one in the image. In
rural scenes, there is very little other coherent parallel
structure besides that due to the road. The dominant
orientations of much off-road texture such as vegeta-
tion, rocks, etc. are randomly and uniformly distributed
with no strong points of convergence. Even in urban
scenes with non-road parallel structure, such texture is
predominantly horizontal and vertical, and hence the
associated vanishing points are located well outside the
image. Thus we can search for a single vanishing point
located approximately in the camera’s field of view.
With the camera’s internal and external calibration the
x component of the vanishing point can be converted
to the road direction θroad (calibration procedures are
detailed in Section IV-A).

The possible vanishing points for an image pixel p
with dominant orientation θ(p) are all of the points
(x, y) along the ray defined by rp = (p, θ(p)). Intu-
itively, the best estimate for the vanishing point vmax

is that point lying on or near the most such dominant
orientation rays (see [16], [15], [12], [19] for recent
work on vanishing point finding). In [20], we formulated
an objective function votes(v) to evaluate the support of
road vanishing point candidates v over a search region
C roughly the size of the image itself.

In the manner of a Hough transform, an efficient and
relatively accurate (given enough orientations) voting
scheme, which we call raster voting, is to draw a “ray of
votes” rp per voter in an additive accumulation buffer
A in which each pixel is a vanishing point candidate v.
After rendering every vote ray, the pixel in A (which
represents C at a fixed resolution) with the maximum
value is vmax . Graphics hardware accelerates this voting
operation, though 8-bit accumulation buffers limit “elec-
tions” to a maximum of 256 votes per candidate, which
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Fig. 4. RoadCompass’s output on a diverse set of road scenes, with computed vanishing points shown as crosses. For comparison, Gaussian
fits of a number of human responses (see text) are marked with ellipses.

is quite enough for the resolution of C that we use1.
We did not find that variations on the voting function
such as weighting p’s vote by the strength of the filter
response at θ(p) or the anisotropy of the filter response
over all angles at p improved the accuracy of vanishing
point localization.

The raw maximum of votes(v) is noisy, and since
the vanishing point shifts only slightly between frames
as the vehicle moves, we smooth the estimate using
a particle filter [33]. Particles are initially distributed
uniformly in order to coarsely localize the vanishing
point. Random-walk dynamics p(vt |vt−1) (e.g., a low-
variance, circular Gaussian on the vanishing point posi-
tion) then limit the search region to track the vanishing
point closely, reducing the chance of misidentification
due to a false peak elsewhere in the image. The averag-
ing effect of filtering also mitigates saturation by return-
ing the middle of a region of saturated votes as the max,
which generally correlates with where the unsaturated
maximum would be. We have not found that diminishing

1Larger numbers of votes being cast at C resolutions much more
than 80×60 led to saturation artifacts in 8-bit buffers, preventing true
vote totals from being recorded. Generations of graphics cards from
the NVIDIA GeForce 6800 onward have supported higher-precision
blending, removing this issue, but these were not available on Alice at
the time of the 2005 GCE. This, plus the need for real-time dominant
orientation calculation, drove the original choice of the 80× 60 scale
rather than any fundamental algorithmic considerations.

lag by adding the image velocity of the vanishing point
to the state improves system performance appreciably,
as the system runs at 30+ fps and generally tracks the
road vanishing point tightly as long as it is in view.
By definition, track of the vanishing point is lost if it
leaves the search region C, such as at 90-degree turns
and on very curvy roads. In this case the particle filter’s
particles automatically disperse in a kind of search until
the vanishing point re-enters C and is reacquired. An
example of this occurring at a sharp turn is shown in
Figure 19(a2).

Figure 3(c) shows the vanishing point candidate
function for the image in Figure 3(a). A cluster of the
highest vote totals is at the apex of the road region to the
right. The current particle distribution and its weighted
mean (i.e., the estimated vanishing point location) are
shown in Figure 3(d). Results for tracking the road
vanishing point over a sample sequence of images in a
different location are shown in the top row of Figure 7.
A vertical cyan line marks the vehicle direction in these
and some other figures to clarify that when there is a
yaw offset between the camera and vehicle coordinate
systems the image projection of the vehicle direction
does not correspond to the image center.

To gain confidence in the accuracy of the vanishing
point estimation method in a variety of situations, we
conducted an experiment comparing the algorithm’s
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outputs to human perceptions [20]. 16 illustrative images
were chosen from a large set of high-resolution digital
photographs taken on a scouting trip along a possible
Grand Challenge route in the Southern California desert.
The algorithm was run on resampled 320×240 versions
of the images using raster voting and several iterations
of particle-based search; Figure 4 shows the computed
vmax for 12 of the 16 images with a green cross. To
assess the algorithm’s performance vs. human perception
of the vanishing point location, we invited ∼ 30 mem-
bers of the UD computer science department to partici-
pate in a web-based study. Subjects were given a short
definition of road vanishing points, shown two different
example images with the vanishing point marked, and
asked to click where they thought the vanishing point
was in 640× 480 versions of each of the 16 images. 16
subjects completed the study; 11 (4.3%) of their choices
were manually removed as obvious misclick outliers.
The figure indicates the distribution of human choices
with red 3σ error ellipses, most of which were fairly
tight. The mean (median) positional difference at the
320× 240 scale between our algorithm’s estimates and
the human choices was 7.8 pixels horizontally (5.3) and
8.0 pixels vertically (4.6).

C. Ladar-based Lateral Offset Estimation

Given θroad from the visual vanishing point tracker
(θroad = 0 is straight ahead), we next compute a
maximum a posteriori estimate of the lateral offset δroad
of the gap in the obstacle map in front of the vehicle that
corresponds to the road. Figure 5 diagrams the steps of
the lateral offset calculation from an overhead perspec-
tive for a sample scene (frame 075 of the sequence in
Figure 7). We call the line defined in vehicle coordinates
by (θroad , δroad ) the road centerline.

First, an obstacle map (plotted at the top of Fig-
ure 5(b) as a set of red points) is constructed by
transforming all ladar hit points over all registered ladars
to vehicle coordinates and filtering them with a “danger”
criterion. The criterion is a large absolute elevation
difference from the height of the bottom of the vehicle’s
tires (we use 0.5 m as a threshold). Any such point
is treated as evidence of a possible hazard that cannot
simply be driven over: either a too-tall positive obstacle
or a too-deep negative obstacle. The primary SICK ladar
used to populate the obstacle map is mounted on the
bumper about 0.5 m above the ground and pitched
horizontally, as shown in Figure I(a). We experimented
with a secondary ladar mounted on the roof (also shown
in Figure I(a)) about 2 m above the ground and pitched
down about 5-10 degrees to detect negative obstacles,
but it was not used in any of this paper’s results because
of pitch calibration issues.

(a)

(b)

Fig. 5. Road region estimation process: (a) Camera image of sample
scene with vanishing point estimate overlaid; (b) Steps of ladar gap
tracker. Bumper ladar-identified obstacles (red points) are projected
along θroad (direction of diagonal blue line) onto the front axle axis
of the vehicle (green line). The estimated obstacle density in this
projection is graphed in red below, with the particle filter particle
distribution shown in yellow below that. δroad is indicated by the
intersection of the centerline with the front axle axis—here very close
to 0.

To find the road-induced gap in the obstacle map,
obstacles are projected via parallel projection along the
vanishing-point-based estimate of θroad (the diagonal
blue line in Figure 5(b)) onto the axis defined by the
front axle of the vehicle. Intuitively, we seek a segment
along this axis that is at least as wide as the vehicle
width wvehicle , has minimal projected obstacle density,
and is close to the vehicle’s current center. Under the
assumption that the vehicle is currently on the road,
the purpose of favoring gap hypotheses in its immediate
vicinity is to avoid swerving toward attractively empty
areas beyond the road boundary.

The obstacle density D(x) is assessed at a par-
ticular lateral offset x along the axle axis (x = 0
marks the vehicle center) by summing the number of
projected obstacle points p in a roughly road-width-
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sized neighborhood around x. We count nearby obstacles
more than distant ones toward the steering decision
by exponentially weighting obstacle points by their z
distance from the axle axis pz , yielding the formula
D(x) =

∑
p∈[x−∆,x+∆] e

−λpz , where we use the values
∆ = wvehicle and λ = 0.05. The projected obstacle
density for the sample scene is graphed in red in
Figure 5(b) under the projection axis—note the two
humps corresponding to the berms and vegetation that
flank each side of the road.

In practice, the projected obstacle density is not
computed at regular intervals as in the figure, but rather
sampled randomly with a particle filter [33]: the gap
tracker. Each particle i’s 1-D state xi (n = 100 par-
ticles are used with a sampling variance of σ2 = 0.1)
represents a hypothesis about the road gap location; its
likelihood is measured as:

p(xi) =
{

e−γD(xi) if −∆ ≤ xi ≤ ∆
0 otherwise

(2)

where γ = 0.1. Gap hypotheses more than a vehicle
width (the value of ∆) from the vehicle center are
assigned 0 likelihoods in order to prevent swerves as
mentioned above. This likelihood function produces
correct behavior when the actual road width is less than
2∆, and when the road width is more than 2∆ the
estimated centerline will tend to be near one side of
the road. Though not the true road centerline in such
cases, it is still suitable for safe driving.

The distribution of gap tracker particles for our
example is graphed in yellow in Figure 5(b) beneath
the projected obstacle density. More likely particles are
drawn as taller vertical lines. The gap estimate derived
from the particle distribution via a weighted sum is
shown by the intersection of the blue centerline with
the axle axis. In the figure’s example, the lateral offset
estimate δroad is close to 0, indicating a belief that
the vehicle is well centered. Note the importance of
the road direction: if obstacles were projected straight
down onto the axle axis without regard for it, the lateral
offset would be biased in a curved road segment to force
the vehicle toward the inside of the curve, a dangerous
inaccuracy.

The road centerline can be augmented with road
width estimates at n discrete points along it to obtain
the road region. At the ith point along the centerline
(n = 25 with an interval of 2 m between points here),
the road width wi

road is inferred as the diameter of the
smallest circle that contains k points in the obstacle
map. We chose k = 3 empirically to somewhat mitigate
ladar sensor noise, and limit the maximum circle radius
to 5 m when there are < k obstacles in the vicinity.
The road region terminates at the mth point (m < n)

Fig. 6. Satellite photograph of the road segment driven in Figure 7.
The GPS history of the vehicle position is overlaid in green. Frame
000 was captured at the position marked by the upper-left red dot;
frame 300 was captured at the lower-right purple dot.

if wm
road < wvehicle . For speed of rasterization, rather

than calculating the union of all such circles we use a
polygonal region with vertices defined by the endpoints
of the circle diameters orthogonal to the centerline. A
sample road region calculated in this fashion is drawn
in green in Figure 5(b).

An example of RoadCompass running passively
while the vehicle is under manual control is shown
in Figure 7 (Figure 6 is a zoomed 1 m / pixel aerial
photograph of the area where the vehicle was driven
from left to right with frame locations marked). Note
the shortening of the road region as the turns are entered
in frames 075 and 225, and its lengthening as the road
ahead straightens in frames 150 and 300. The estimated
lateral offset shows the vehicle to be right of center in
frame 000 and left of center in frame 150. In the camera
images, RoadCompass can be seen to anticipate both
the left and the right turn, and the vision-based θroad

estimates agree well with the obstacle map.
A phenomenon not shown in these data but worth

discussing is what happens when Alice hits a bump or
dip at speed. In such situations the vehicle may pitch
down slightly, causing the bumper ladar to “see” the
ground plane itself as a line of obstacles stretching
across the road. This causes the road region to be
erroneously shortened, but only briefly and without
negative consequence. Because the obstacle map is not
integrated over multiple frames no phantom obstacles
remain after the vehicle suspension rights itself.

D. Vehicle Control

We have experimented with two methods of con-
trolling Alice with the parameters computed above.
The first, trajectory following, connects RoadCom-
pass directly to Alice’s low-level controller, which at-
tempts to reach a series of closely-spaced UTM way-
points with a specified velocity at each one (see Section
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000 075 150 225 300

Fig. 7. Estimated road shape from manual driving around an S-turn. Illustrative data 75 frames apart (about 2.5 second intervals) are shown,
with the calculated vanishing points overlaid on the camera images and the road offset and width calculations shown below. The scale of the
obstacle map images is 40 m wide and 50 m in front of the vehicle (which is about 2 m wide and 5 m long).

3.4 of [4] for details). Under this method, the road cen-
terline defined by θroad and δroad directly parametrizes
a linear trajectory relative to the current vehicle posi-
tion. As these values change the trajectory is refreshed,
allowing the vehicle to smoothly go around curves while
maintaining clearance from the road edges, since only
a fraction of the old waypoints are reached before new
goals are set. Caps on the speed targets are set before
the run and reduced in proportion to the magnitude of
θroad to cause slowing around curves. In practice, the
vehicle-centric trajectory coordinates are converted to
global coordinates by adding the vehicle’s current GPS-
and INS-derived estimate of its UTM coordinates.

The second control method, which we call cost
painting, allows RoadCompass to interact with Alice
as one of a set of weighted opinions about how to
steer (other factors include obstacle detections, RDDF
boundaries2, and so on). The chief difference here is
that RoadCompass paints its estimated road region into
a joint cost map which Alice’s overarching planner
(Section 5.1 of [4]) generates trajectories from. When
RoadCompass is the only input to the map, the planned
trajectories are virtually the same as those of the method
described above.

III. FAILURE DETECTION

There are a number of visual situations that can cause
the vanishing point estimator described above to fail.

2The DARPA RDDF (Route Data Description File) used for the
2005 GCE specifies a sequence of waypoints to visit and the widths
of “corridors” between them that the vehicle must stay within. For the
2007 Urban Challenge information about intersection locations was
added and it was called the RNDF (Route Network Description File).

These fall into two general categories: (1) poor lighting
conditions, and (2) non-road images. In the first case,
because of darkness, strong shadows, or sun glare, it
may be difficult or impossible to accurately infer the
road vanishing point. The second failure condition, non-
road images, occurs when the vehicle comes to a 90-
degree turn, starts off the road, or leaves the road—for
example, when driven manually, or because the GCE
route description requires it—and there is no vanishing
point or obstacle gap to find.

When either type of situation is encountered, if
RoadCompass is in trajectory following mode (i.e., in
complete control of the vehicle) it simply halts for
safety. If it is in cost painting mode (i.e., operating
as a part of the complete Alice system) it signals the
other modules that it cannot offer a confident road shape
estimate. When failure conditions are determined to end,
RoadCompass restarts with its particle filters initialized
in uniform distributions in order to refind the vanishing
point and obstacle gap de novo.

Because we knew that RoadCompass would run the
2005 GCE in the daytime in cost painting mode along
with many other modules, we set our failure thresholds
relatively low in the belief that other parts of the system
would pick up the slack should it go off-line. Had
RoadCompass been intended to always have sole control
of the vehicle, we would of course have “hardened”
its ability to operate in adverse visual conditions and
find roads not visible directly in front of it. In [23] we
reported results on an aerial image-based road tracker
and detection module which would have helped sub-
stantially in this regard. However, this component was
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(a) (b)

Fig. 8. Shadow failure conditions: (a) A problematic image with the
vehicle shadow cast onto the road in front of it; (b) Same image with
outline of predicted vehicle shadow location in image overlaid.

not deemed necessary for the final configuration of
RoadCompass and was not used in any of this paper’s
results.

A. Darkness

A number of Alice’s other modules are completely
ladar-based and thus can operate at night. RoadCom-
pass’s vanishing point detection does not work, of
course, with no light and performs poorly in twilight
when contrast is too low for reliable dominant orien-
tation estimation. To test for such conditions, we use
a simple astronomical calculation of the sun’s altitude
angle βalt above the horizon (using code from [34])
and see if it is over a threshold. This calculation
requires the current date and time and the vehicle’s
UTM coordinates. Such a sun-position-based darkness
test effectively sets a daily window of “operating hours”
for RoadCompass regardless of where and when it is
running.

Based on empirical observation over many days of
testing in terrain where distant hills raised the effective
horizon, we set the threshold to 5 degrees, which is about
30 minutes (at the latitude where testing was conducted
and the 2005 GCE was run) from the end of so-called
“civil twilight” defined by βalt = −6 degrees. We
found this approach to be satisfactory for the conditions
that we tested in, but an image-based test could be
superior by also detecting darkness caused by tunnels,
shadows cast by nearby steep terrain, and cloudiness or
other inclement atmospheric conditions. The no road test
described below offers some coverage of such situations.

B. Shadows

RoadCompass does not have problems with strong
shadows cast by power towers, trees, and other tall
objects near the road per se3. It depends on their angle:

3Shadows from distant terrain features like hills and mountains have
very soft edges, and thus are more important as causes of global
illumination changes.

shadows cast across the road tend not to matter because
the dominant orientations induced by their edges vote
for vanishing points well outside the search region C.
Examples of this can be seen in the second column,
first row of Figure 4 and in the frames at km 20, 40, 70,
75, and 185 of Figure 20. Rather, it is shadows that are
cast nearly along the road, contradicting our assumption
that the road vanishing point is the only strong one in
C, which are problematic. Fortunately, these are quite
sparse in desert environments and thus usually outliers in
the dominant orientation voting process as the vehicle
passes by; empirically, they have not been a problem
during extensive testing.

The most pernicious situation occurs when the sun is
behind the vehicle and low enough to cast the vehicle’s
own shadow far along the road in front of it, as in Fig-
ure 8(a). When this happens, the edges of the triangular
region of the vehicle shadow can form two converging
lines with their own vanishing point. If the shadow edges
are strong enough and the actual road vanishing point
is close enough to the phantom vanishing point, the
vanishing point tracker may be distracted and “hop”
from the road peak in votes(v) to the vehicle shadow
peak. When this happens, RoadCompass will direct the
vehicle to follow its own shadow until and unless the
vanishing point tracker hops back to the road peak,
possibly leading to a road departure.

One possible approach to mitigating this problem is
to try to explicitly detect and remove such shadows
in the image (as, for example, in [35] and [36]) as
a pre-processing step before dominant orientations are
calculated. We have not attempted to implement such
a technique, since we deemed it a less reliable and
more computationally-expensive option than an astro-
nomical prediction of whether the vehicle shadow is
“dangerously” close to the tracked road vanishing point.
Furthermore, we do not try to explicitly decide whether
the vanishing point tracker has actually hopped from
one peak to the other, but instead simply threshold on
the angular distance between the predicted shadow tip
and the road vanishing point.

As with the darkness test above, we calculate the
sun altitude βalt , and also the sun azimuth or compass
direction βazi . The latter variable is converted to a
vehicle-centric value β̂azi using the vehicle’s heading
so that β̂azi = 0 is always straight ahead. A similar
conversion of βalt using Alice’s pitch angle could be
done to improve shadow prediction on up- and down-
hill grades, but we did not actually turn on this option for
the race and thus assumed approximately level, planar
ground. The first part of the shadow test is similar to the
darkness test: is the sun low enough to cast a vehicle
shadow that will be long enough to be anywhere near the
horizon—the y component of the road vanishing point—
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in the image? Empirically for our camera calibration, we
set this to be true when βalt ≤ 15 degrees. The second
part of the shadow test is whether the lateral distance
between the predicted shadow tip and the road direction
is small enough that the tracker might be distracted. We
determined this to be true when |β̂azi−θroad−180| ≤ 30
degrees. Finally, because the vehicle heading estimates
are somewhat noisy, we temporally filter both parts of
the shadow test such that both must have been true in at
least 3 of the last 10 frames for RoadCompass to stop
outputting road shape estimates.

For visualization purposes, we can predict the shadow
region in the image by modeling the 3-D shape of Alice
as a rectangular box and projecting its 8 corners onto the
ground plane via parallel projection from the direction
(βalt , β̂azi). The convex hull of the projected points
defines a bounding polygon for the shadow. With the
camera’s internal and external calibration, we can then
backproject this region into the image and see how well
it agrees with the actual shadow. An example vehicle
shadow prediction is outlined in gray in Figure 8(b).

This sun-position-based shadow test is likely much
more conservative than a good image-based one would
be since it does not take weather or terrain into account.
If conditions are cloudy, shadows may be weakened
enough that no sun position will cause problems. Also,
if the ground is not planar, the shadow edges may not be
visible (e.g., they could be cast over the edge of a cliff)
or non-straight (e.g., distorted by bumpy vegetation or
rocks) and hence not capable of forming a distracting
vanishing point.

C. Sun glare

Almost the opposite problem of the shadow issue
described above occurs when the sun is low and in front
of the vehicle such that it is visible to the road-following
camera. Such a sun position causes many pixels on
the camera CCD to saturate, and often results in a
vertical striped blooming pattern such as that exhibited
by the image in Figure 9(a). When this occurs, the stripe
introduces very strong spurious edges that bias the vote
function and induce a phantom vanishing point along
it. If not detected or corrected for, RoadCompass could
erroneously follow the sun instead of the road.

We do not use an astronomical approach for the glare
test for two reasons. First, since glare can occur for
larger values of βalt than the shadow issue, a similarly
conservative solution like shutting down when the sun
is close to being visible would result in too few hours
of operation for RoadCompass. Moreover, the simple
presence of the sun in the image does not always cause
distracting blooming. Figure 9(c), for example, shows
how many sky pixels may be saturated without affecting

(a) (b)

(c) (d)

Fig. 9. Sun glare failure conditions: (a) Vertical-stripe blooming sat-
uration caused by direct viewing of sun; we recognize such conditions
and turn off road following during them; (b) Mask of saturated pixels
in (a)’s image after dilation; (c) About two seconds later the sun is
leaving the image as the vehicle turns. The sky is very saturated, but
the vertical stripe is not there as shown in (d)’s saturated pixel mask
of image (c). RoadCompass accepts such images.

the appearance of the ground texture. Second and most
importantly, the alternative of an image-based test is
much more feasible because detecting saturated pixels
is trivial compared to detecting shadow pixels.

The first step of our approach is to find all saturated
pixels in the current image and perform a single dilation
using a 3 × 3 structuring element. The result after this
step is shown for the example images in Figures 9(b) and
(d). Simply counting saturated pixels is not sufficient, as
Figure 9(d) has more total saturation than Figure 9(b)
(17.2% of the image vs. 16.1% after dilation), yet it
is not the problem image of the two. Instead, we look
explicitly for a vertical stripe by checking whether any
column of pixels in the image is nearly all (more than
80%) saturated. Figure 9(b)’s worst column is 100% sat-
urated, whereas Figure 9(d)’s worst is 55%. Finally, this
instantaneous measurement is then temporally filtered
like the shadow test, with at least 3 of the last 10 images
required to exhibit the stripe for the glare test to be true.

D. No road

The final failure condition that we detect is the no
road test, for when the vehicle cannot see a road ahead
to continue following. This may happen if the road
dead-ends or peters out, if a T-intersection or right-
angled turn is approached and the continuation of the
road is outside the camera field of view, or if the
vehicle should for any reason leave an otherwise normal
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road. This is the most important failure test because
traveling off-road inadvertently is the worst thing that
RoadCompass could allow to happen, and the thing
that the other tests are supposed to prevent. If they do
not work, an accurate no road test provides a second
level of security to prevent a mishap. Put another way,
the darkness, shadow, and glare tests address the most
common causes of RoadCompass failing; the no road
test actually senses when it has failed, regardless of the
reason.

An obvious approach to this test which we discussed
briefly in the introduction is to use a digital road
map and the vehicle’s GPS-derived UTM coordinates to
check whether the vehicle has strayed from a road via
some threshold on distance. There are two reasons why
we did not use this approach. First, available digital road
maps have the best coverage in urban and developed
areas and considerably less in the desert areas where
testing was conducted and the GCE was expected to
occur. We did spot checks of the free U.S. Census
Bureau’s TIGER/Line database (2004 2nd edition) and
found it to have totally inadequate coverage of our
testing areas in the Mojave desert of Southern California.
The commercial map products of companies such as
NAVTEQ and TeleAtlas are more complete; checking
Google Maps when it was based on NAVTEQ, we found
very good coverage for all roads in our major testing
area. Because the cost of licensing such a database
was very high, however, we did not pursue this option
further. A related option, which we studied in [37],
[23] and has been a subject of research by many others
(e.g. [38], [39], [40]), is automatic extraction of road
networks from satellite imagery. As mentioned at the
beginning of Section III, we did not use this module in
RoadCompass’s final configuration.

The second reason we did not use a map-and-GPS
approach to the no road test is the imprecision of
the vehicle’s position estimates. Traveling on dirt roads
often only a few meters wider than the vehicle, small
lateral positional errors could put the vehicle outside
of the road when it really is not (or vice versa), and
occasional losses of GPS lock could temporarily blind
the system. An image-based test would be much more
sensitive to small position and heading changes, and
immune to interruptions in GPS coverage.

A system for classifying images as containing a road
or not could be trained from examples, but through
previous experience with classifier-based road segmen-
tation [10] we felt that variability in road material,
illumination, and weather would make achieving true
robustness difficult. Instead, we derived a definition of
road-containing images from RoadCompass’s vanishing
point finder that has turned out to be very general and
reliable. The intuitive idea of the approach is that a

(1)

(2)

(3)

(4)

Fig. 10. No road test results for a segment of Team Caltech’s 2004
GCE route (direction of travel is up and to the left). In the top figure
red segments are “no road” and green are “road” (the image covers
about 300 m by 150 m). The bottom four images were captured at
the numbered locations in the top image; their corresponding vote
functions are shown at right. Images 1 and 2 begin no road segments,
while 3 and 4 begin road segments.
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road image easily trackable by our algorithm must have
a strong vanishing point, so we test the vote function
votes(v) to see if it has a strong peak. As we asserted at
the beginning of Section II-B, rural scenes without roads
tend to have a more random distribution of dominant ori-
entations, and thus should have a flatter, more uniformly
distributed vote function. Thus, the sharpness of the peak
in the vote function should serve as an indicator of the
reliability of any estimate that we derive from it.

One way to assess the peakedness of the vote function
is to compute the Kullback-Leibler (KL) divergence [41]
between it and a uniform distribution of the vote totals.4

The KL divergence is a pseudo-metric for measuring the
dissimilarity between two probability distributions p and
q. It is defined for discrete p, q in one form as

KL(p, q) = −
∑

k

pk ln
qk

pk

Here the probability distributions are over the 256 pos-
sible vote totals at each pixel for an 8-bit, saturating
accumulation buffer, so pk = 1

256 and qk is taken from
the vote function.

Low KL values are obtained when many different
vote totals are observed in the candidate region, while
high values are measured with bunching of vote totals at
either the high or low end. We decide that an input image
is “road-like” when the KL of votes(v) is over a thresh-
old and the estimated vanishing point can be considered
reliable. Because of how we treated zero-probability
vote counts qk in an early implementation (not using
proper smoothing techniques [42]), computed KL values
were not necessarily non-negative. This resulted in a
shifted range for the road confidence that did not appear
to affect the accuracy of the method, and explains our
empirically chosen threshold −0.1. We have kept this
shifted scale for consistency of comparison over several
years of logged values.

To temporally smooth this decision, we examine the
last 100 results of the road confidence threshold com-
parison (about 3.3 seconds worth of images) and require
50% of them to be over threshold for the estimated road
geometry to be passed on to the vehicle controller.

Some results demonstrating the efficacy of this cri-
terion are shown in Figure 10. These are taken from
Caltech’s 2004 GCE logs near the start of the course.
The vehicle was driven on, off, and around a road for
several hundred meters, crossing the road several times.
The output of the no road test is graphed over the
vehicle’s track with red indicating off-road segments
and green on-road. Note that the test is not strictly
about where the vehicle currently is, but rather what

4An approach using the likelihood ratio was used to make a similar
decision about whether a scene had vanishing points or not in [19].

it sees immediately ahead. Thus the end of the road at
the T-intersection is anticipated, and the road is not re-
recognized until the 90-degree turn is completed.

IV. INTEGRATED TESTS

We present results for extended runs of RoadCom-
pass in three autonomous robotic scenarios. First, we
describe how RoadCompass was able to successfully
drive Caltech’s vehicle in pre-GCE testing as the sole
controller over 15+ km, with the test only terminated
due to unrelated hardware issues. Second, we analyze
RoadCompass’s performance as a module running live
on Caltech’s vehicle Alice during the 2005 GCE. Finally,
since Alice only covered about 6% of the 212 km course
length before being disabled, we ran RoadCompass on
logged data from Carnegie-Mellon University’s (CMU)
GCE 2005 entry H1ghlander [26], which completed the
entire course. Data for CMU’s other vehicle Sandstorm
was also available, but not used because its only camera
stopped logging around the 200 km mark, just before
the difficult Beer Bottle pass section.

A. Pre-GCE testing

RoadCompass has been tested in autonomous mode
in a number of situations. In a culminating experiment
that took place on the morning of August 4, 2005 in the
Stoddard Valley Off-Highway Vehicle (OHV) Area in
Southern California, RoadCompass commanded Alice’s
motion directly using the trajectory following method
of Section II-D. Modulo several pauses to adjust the
maximum vehicle speed, this control scheme safely
and smoothly guided the vehicle along two challenging
desert road segments. The first segment, whose start and
finish are marked with the ¬ and ­ icons respectively in
Figure 11)(a), was a 12.1 km-long curving road which
gained about 140 m in elevation over its length. The
mean speed (including pauses) over the approximately
45-minute run was 16.0 km/h, with maximum sustained
speeds of up to 37 km/h.

The second segment, marked with the ® and ¯ icons
in the figure, was about 3.4 km in length and included an
approach to, ascent, and descent of a 50 m-high hill with
a maximum grade of 10%. The apex of the hill is marked
with a “+” icon. Manual throttle control was used by
the safety driver on the descent because the trajectory
follower was not pitch-aware in setting its speed limits.
Figures 11)(b) and (c) show views of the approach to the
hill and back toward the start of the segment from the
summit, respectively. The mean speed over the roughly
15-minute run was 14.0 km/h.

On/off road testing was not used for either run—
RoadCompass assumed it was on a road at all times.
The road segment between icons ­ and ® was driven
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(a)

(b) (c)

Fig. 11. (a) Traces of Stoddard Valley OHV autonomous trajectory follower runs. Map covers a 14.3 km by 7.4 km area. (b) View toward
top of hill marked by “+” icon in map; (c) View from summit of hill back toward approach.

manually because it was insufficiently interesting for
autonomous testing given hardware-related time con-
straints (the CPU rack cooling system was malfunction-
ing that day). Because of drop-outs in the GPS logs
of the runs, the vehicle’s position had to be manually
interpolated to create the figure. The start and stop of
each segment is precise, however.

In subsequent experiments, we controlled the ve-
hicle less directly, through the cost painting method
described in Section II-D. Several more autonomous
kilometers were logged on different desert roads in this
fashion with RoadCompass exercising primary control,
and more still with it as part of a larger ensemble of
“opinion providers.” One key attribute of this method of
vehicle control is that higher-level constraints such as

GCE course boundaries can override found roads. For
example, a sample course visiting all three vertices of
the triangle of roads in Figure 11(a) is untraversable
in full by the trajectory following method because it
requires a turn at each vertex off of the main road onto
a secondary road, and RoadCompass’s tendency is to
stay on whatever road it starts on. Using an RDDF
module in conjunction with cost painting forces the
vehicle to take a particular choice at a fork regardless
of RoadCompass’s opinion.

For these experiments and the 2005 GCE, the in-
ternal calibration of Alice’s road-following camera was
obtained using standard techniques [43]. The exter-
nal calibrations of the ladar-to-vehicle and camera-to-
vehicle transformations were performed by hand by
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Fig. 12. GPS log of Alice’s GCE 2005 race. Markers at 1 km intervals show the directionality of the course. Green locations were classified
as road and red as non-road (with a -0.1 confidence threshold). The area shown is roughly 6.2 km by 2.4 km; north is to the right (image
courtesy of Google Earth)

Caltech team members. The yaw component of the
camera-to-vehicle transformation was then refined using
the following self-calibration procedure. First, Road-
Compass was run on a sequence of images captured
while Alice was driven straight down a straight road.
Assuming RoadCompass to be an unbiased estimator
of road direction, the difference between the median
x coordinate of RoadCompass’s tracked road vanishing
point and half the camera’s horizontal resolution would
be 0 if the camera’s optical axis was directly aligned
with the longitudinal direction of vehicle motion. This
method yielded a correction of about 2 degrees in the
camera yaw estimate.

B. 2005 GCE: Alice

The 2005 GCE began on the morning of October 8
in Primm, NV. Based on inspection of logged images,
Alice started moving at 8:53:05 am and was paused by
DARPA at 9:24:59 am after crashing into a barrier. Over
its 31:54 on the course, Alice covered approximately
12.99 km at an average speed of 24.4 km/h. The portion
of the course covered by Alice is pictured in Figure 12.

The proximate cause of the crash, described in detail
in [4], was a GPS problem experienced as Alice passed
under power lines. For the GPS-based statistics that
follow, we treat Alice’s position estimates as accurate
until the 12.90 km course marker.

The sun altitude was calculated at 26.5 degrees
when Alice started moving and 31.8 degrees when she
stopped, so no darkness or shadow failures occurred, as
these are only possible with sun altitudes less than 5 or
15 degrees, respectively.

In order to assess the accuracy of RoadCompass’s

Fig. 13. How vehicle trajectories are converted to distances along
course (detail of Caltech data). The raw GPS trajectory is shown in
black and the RDDF corridor boundaries in blue. The corridor midline
is a green line with red numbered meter markers.

road direction estimates relative to the baseline perfor-
mance of each vehicle, we calculated a linear trajectory
consisting of waypoints along the RDDF corridor mid-
line at 1 m intervals over the entire 2005 GCE course.

For each such “meter marker”, we derive a nominal
course heading linearly from the preceding and succeed-
ing marker positions. Each meter marker is corresponded
to a vehicle’s state variables by intersecting a line
through it and orthogonal to the course heading with the
vehicle’s GPS trajectory, as shown in Figure 13. Posi-
tion, heading, and other state parameters at that point are
linearly interpolated from the bracketing logged values.
For efficiency as well as correctness when the course
loops, the intersection test is only done on a window of
the GPS trajectory ± a few meters from the last found
intersection point.

Let the heading difference be the signed difference
between the course heading at the corresponding meter
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4.44 km 5.84 km 6.11 km 6.13 km

7.25 km 7.33 km 10.84 km 12.29 km

Fig. 14. RoadCompass on Alice during GCE 2005. Images at top are discussed in the text. Top (magenta) graph: Absolute difference
between Alice’s heading and RDDF-indicated course direction at each meter marker. Upper middle (blue) graph: Absolute difference between
Alice’s RoadCompass-corrected heading and course direction. Sections classified as non-road are shaded red. Lower middle (red) graph: KL
divergence-derived road confidence for current image. Values over -0.1 (dashed line) are considered high confidence. Bottom (green) graph:
Percentage of last 100 images with high road confidence. If under 50% (dashed line), current image is classified as non-road.

marker and the actual vehicle heading, with negative
values indicating that the vehicle should turn left to
correct and positive that it should turn right. Over Alice’s
12.90 km on the course, the median absolute value
of the heading difference (plotted in the first graph
of Figure 14), or median absolute heading difference
(MAHD), was 2.93 degrees (mean µ = 4.20 and stan-
dard deviation σ = 4.34 after eliminating several spuri-

ous values). The median absolute lateral offset (MALO)
between Alice’s position and the corresponding point
on the course midline was 3.65 m. While this MAHD
sounds small, qualitatively Alice swerved back and forth
across the course midline quite a bit, though it stayed
within the RDDF corridor boundaries until the crash.
For comparison, over the same section of the course
H1ghlander followed a much straighter course, with a
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MAHD of 0.54 degrees (µ = 0.84, σ = 1.06) and a
MALO of 1.10 m.

Although RoadCompass was running on Alice during
GCE 2005 and contributing to a combined cost map
used for planning, as best the author can tell from
personal communications with other members of the
Caltech team, its role on race day was essentially limited
to raising Alice’s speed limit when a road was detected.
Thus, we assume that Alice’s heading was not correlated
with RoadCompass’s output, making the following anal-
ysis valid.

RoadCompass classified 98.4% of the meter markers
over Alice’s 12.90 km as “on road” (red bars in the sec-
ond plot of Figure 14 indicate off-road classifications).
While most of that section of the course was on a dry
lake bed and not actually a road, it was often heavily
marked with tire tracks of vehicles that had previously
driven the course, and thus had mostly strong vanishing
point (VP) structure.

RoadCompass’s road direction estimate θroad , ex-
plained in Section II-B, is relative to the vehicle’s current
direction and can be thought of as an estimated heading
difference as defined above. For all meter markers
classified as on-road, then, a direct measure of θroad ’s
correctness is how well it tracks the heading difference.
This is captured by a RoadCompass-corrected heading
difference (CHD) defined as the logged heading differ-
ence minus θroad . The median of the CHD (plotted in
the second graph of Figure 14) is 1.25 degrees, a 42.7%
improvement on Alice’s logged heading.

A serious issue that reduced RoadCompass’s per-
formance between 6.1 and 7.2 km along the course
was the presence of undetected sun glare conditions,
causing a run of erroneous θroad estimates. An example
is shown in the 6.13 km image of Figure 14. From our
analysis, it appears that the glare was not detected by
the method of Section III-C because the sun-induced
column of saturated pixels which the method looks for
was in fact rarely fully saturated, but still bright enough
(especially with little other oriented texture along this
dry lake section of the course) to attract the vanishing
point finder.

Such partially-saturated bright columns were never
observed during pre-race testing. We have several hy-
potheses about why this new phenomenon occurred.
First, the race day road-following camera was changed
from the one used during pre-race testing at the last
minute and may have had different CCD blooming char-
acteristics. Second, the sun’s particular altitude, which
placed the solar disk partially outside the image and thus
somewhat attenuated its strength, may not have been
encountered during testing.

In fact, the general rise in the RoadCompass-
corrected heading error between about 5.75 and 7.25 km

T - 56.0 s T - 51.5 s

T - 38.3 s T - 5.6 s

T - 3.4 s T - 0.6 s

Fig. 15. Samples of RoadCompass’s output in the last minute before
Alice crashed and was e-stop paused by DARPA. The time beneath
each image indicates how many seconds remain until the e-stop

corresponds almost exactly to the northernmost edge of
the loop the course takes around the lakebed as shown
in Figure 12 . Tire tracks from previous vehicles are
clearly visible along the northbound (< 5.75 km) and
southbound (> 7.25 km) legs of the loop on what
appears to be softer soil, but hardly at all during the
west-to-east crossing through the lakebed center, which
seems to have very hard-packed ground. When the sun
glare does not confuse the on/off road classifier on this
section, one can see from the third and fourth graphs
of Figure 14 that road confidence is at a sustained low
compared to the rest of Alice’s run.

Here we briefly annotate the images of Figure 14
showing illustrative moments in RoadCompass’s perfor-
mance:

• 4.44 km: Alice heads left of course direction (er-
ror spike on graph); RoadCompass correctly sees
tracks to right. CHD local maximum at about the
same place is probably due to tracking lag as Alice
subsequently corrects

• 5.84 km: About the peak of the spike in the
CHD corresponding to a hard-caked section of
lakebed with fewer visible tracks and thus little VP
structure. Also having exposure issues as vehicle
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turns toward sun–ground on left side is overex-
posed. Note how road confidence dips almost to
the threshold here

• 6.11 km: Very hard-caked surface–no visible VP
structure classified as off road. Sun is about to enter
image as vehicle continues turning right

• 6.13 km: Sun is inside image, saturating column
below it. This makes RoadCompass see VP struc-
ture and track it incorrectly

• 7.25 km: Last low road confidence at end of
lakebed crossing. The estimated road direction here
does correspond to the tire tracks, but the RDDF
does not—it is merging at a diagonal

• 7.33 km: Rebound in road confidence as course
now parallels existing tracks

• 10.84 km: RoadCompass is briefly distracted by
road crossing to right, causing rise in CHD

• 12.29 km: On more conventional section of road
easily tracked by RoadCompass as Alice swerves
right onto berm briefly (note tilted horizon)

It is also worth noting that RoadCompass performed
nominally up to the moment that Alice crashed. Since
this occurred after the 12.90 km mark and reliable GPS
logs are not available, we document RoadCompass’s
output by time remaining until DARPA e-stopped the
vehicle in Figure 15.

C. 2005 GCE: H1ghlander

To run RoadCompass on H1ghlander’s logged data,
we used its sensors that most nearly matched those
used on Alice. These were a DV camera mounted on
the passenger-side roof and the lower of two centered,
bumper-mounted SICK ladars, all visible in Figure 16
(the camera is in a cylindrical white housing).

H1ghlander’s camera was only used by CMU for
documentation purposes, and was not explicitly synchro-
nized to the ladar and state data. However, we were
able to infer precise timestamps for image frames by
correlating motion in the video with GPS and ladar
motion and assuming a standard NTSC framerate. Fur-
thermore, no explicit internal or external calibration
was available for the camera. We estimated from the
data the two minimal parameters necessary to convert
RoadCompass’s vanishing point in pixels to a road
direction in radians: the camera’s horizontal field of
view and its yaw relative to the vehicle. The camera’s
horizontal field of view was estimated by relating the
pixel width of a rectangular tunnel mouth imaged at
114.5 km along the course to ladar measurements of
its width from the same position. The camera yaw was
estimated using the technique described in Section IV-
A on all of H1ghlander’s 2005 GCE data. A robust
method such as this was considered reasonable since

Fig. 16. CMU H1ghlander vehicle during 2005 GCE

from the RDDF the vast majority of the course consisted
of straight road segments.

Since H1ghlander’s DV camera had a resolution of
720 × 480 vs. 640 × 480 for Alice’s camera and was
yawed significantly to the left, we cropped the leftmost
80 pixels from each H1ghlander image before scaling
to RoadCompass’s 80× 60 processing resolution. After
cropping, our estimate of the camera’s horizontal field of
view was 54.5 degrees. The effective yaw of the cropped
images was 4.5 degrees to the left. It should be noted
that H1ghlander’s hood occupies a non-trivial portion of
the lower image, blocking road texture, but this did not
seem to diminish performance significantly.

Based on close inspection of its state and camera
logs, H1ghlander ran a very clean race over the 212 km
from start to finish, staying close to the course midline
and heading as it averaged 29.3 km/h not including
pauses. Over the entire course H1ghlander’s median
absolute heading deviation as defined above was 0.63
degrees (µ = 0.95, σ = 1.18). Nearly all of this is
attributable to high curvature segments on which our
simple linear method for calculating RDDF headings is
a poor approximation rather than any error by CMU’s
vehicle. H1ghlander’s primary difficulties, described in
[26], were with velocity control due to engine problems
and are not relevant to this analysis.

Because of H1ghlander’s already-tiny MAHD, we
cannot assert as with Alice that RoadCompass’s road
direction estimates could have been used for course
corrections to improve performance. However, based on
a several full runs on H1ghlander’s logs with virtually
the same parameters as used for Alice, there is strong
evidence that RoadCompass could reliably predict the
upcoming road direction in order to steer along almost
the entire course without an RDDF. Furthermore, Road-
Compass’s no road test did very well at identifying
problem segments such as sharp turns, tunnels, and dry
lake beds that lacked strong vanishing point structure.
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(a)

(b)

(c)

Fig. 17. 2005 GCE H1ghlander data: (a) Plot of RoadCom-
pass tracked road direction vs. RDDF curvature (for images classified
as road and sampled at 1 m intervals over entire course); (b) Histogram
of road direction estimates for straight road segments (i.e., RDDF
curvature of 0); (c) Plot of RoadCompass road confidence vs. RDDF
curvature

Figure 17 shows several views of RoadCompass’s
output over one such run to support this assertion.
Figure 17(a) plots the road direction θroad estimate (for
images classified as road according to Section III-D)
vs. the ground truth local road direction (which we
call “RDDF curvature”), at every one of the 212,017
meter markers along the entire 2005 GCE RDDF. The
RDDF curvature κ is obtained by subtracting the RDDF
heading at meter marker i from the heading ahead at
marker i + ∆ (∆ = 10 m is a compromise value on
how far ahead the camera is looking and which pixels

are doing the bulk of the voting for the vanishing point).
Under the assumption that H1ghlander is tracking the
RDDF closely (which we assert above) and that the
RDDF tracks roads closely, values of 0 mean the road
is perfectly straight, increasing positive values correlate
with stronger rightward curvature, and similarly with
negative values. This plot shows a strong, if noisy,
zero-centered linear correlation between θroad and the
upcoming RDDF heading, with a robustly-estimated
slope of the distribution very close to 1. This is what we
want: κ-degree bends in the road should yield κ-degree
values for θroad .

The data are very sparse for RDDF curvatures outside
of [−0.3, 0.3] radians, making it difficult to ascertain
how θroad ’s variance increases with κ. With the vanish-
ing point candidate region C the same size as the image,
for this camera θroad cannot be estimated outside the
range [−0.55, 0.4] radians regardless.

Figure 17(b) gives a snapshot of the variance of θroad

over a huge variety of different scenes (see Figure 20
for a sample). It is a histogram of θroad over all meter
markers for which the road ahead was “very straight”
(|κ| ≤ 0.001 radians, ∆ = 25 m, bin width 0.01
radians). There were 151,437 of these, or about 71%
of all meter markers along the course. This figure is
essentially a 1-D “slice” through the probability density
function implied by Figure 17(a) which corresponds to
the vertical line at κ = 0. The mean and median are
nearly zero (to within 0.01 degrees), and the standard
deviation is 1.76 degrees. Thus, for straight RDDF
segments it classified as road, RoadCompass found the
correct road direction to within about ±5 degrees over
99% of the time.

Figure 17(c) plots RDDF curvature vs. the KL-
divergence road confidence measure on which the no
road test is based for every image corresponding to
a meter marker. It shows that there is a strong pos-
itive correlation between RDDF segment straightness
and road confidence, evidence that the no road test is
indeed diagnostic for sharp turns for which the road
direction is out of view. Filtering out such problematic
scenes reduces the error in θroad . Using the same road
confidence threshold of -0.1 from Alice’s run, Road-
Compass classified 97.5% of the meter markers over
H1ghlander’s entire run as “on road”5 Raising the road
confidence threshold to -0.05 (based on our analysis
of the Caltech results), which excludes more images,
changed this to value to 95.2%.

Figure 18 maps H1ghlander’s GPS log over the

5As the θroad estimates and the various failure detection methods all
involve temporal filtering, it should be noted that RoadCompass was
actually run on all 797,395 captured images between the start and final
end of H1ghlander’s motion; the meter marker images are simply a
state-corresponded subset of these.
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Fig. 18. GPS log of H1ghlander’s GCE 2005 race. Locations classified by RoadCompass as road are plotted in green and non-road are in
red (confidence threshold -0.05). Markers at 5 km intervals show the directionality of the course. The area shown is roughly 31.8 km by 18.3
km; north is to the right (image courtesy of Google Earth)

entire 2005 GCE course on a satellite photograph of
the area. Meter markers are colored by their road/non-
road classification from the run using the -0.05 confi-
dence threshold. Although the resolution is too low for
reproduction of fine detail across the course, it should
be apparent that many red “no road” classifications are
correlated with sharp turns and corners, as Figure 17(c)
implies. Details of a representative approach to and
departure from a corner just before 73 km are shown
in Figure 19(a).

There were a number of other situations besides high
road curvatures that resulted in no road decisions. As
discussed in the Caltech section above, hard portions
of dry lake beds that did not show tracks well were
typically classified as non-road (and softer areas were
not). This can be most clearly seen in Figure 18 between
6 km and 7 km and for two crossings of another lake
bed around 80 km and 95 km. The three tunnels on the
course were also classified as non-road as H1ghlander
approached them. Details of the last tunnel just before
146 km are shown in Figure 19(b).

The Beer Bottle pass section of the 2005 GCE course
between 200 km and 203 km was universally agreed to
be the most technically demanding section for all finish-
ers [25], [26], and it was no different for RoadCompass.
Very high road curvature, tall rock walls abutting the

road, and difficult illumination conditions combined to
make this the most challenging segment of this course.
RoadCompass classified a significant fraction of the pass
as non-road as seen in Figure 18, most likely due to high
curvatures that made relatively little of the oncoming
road visible. Left turns were worse because the cliff
on the right blocked visibility, whereas right turns had
a drop-off on the left leaving more of the road ahead
visible, and this was reflected in the pattern of no road
classifications. Details of an early section of the pass are
shown in Figure 19(c). The images for 200.27 km and
200.29 km in particular illustrate how in many respects
curve approaches were like sharp turns elsewhere on the
course. Nonetheless, RoadCompass obtained accurate
road direction estimates along many of the straighter
sections of the pass.

At times, however, RoadCompass output erroneously
high horizon estimates on approaching cliff walls and
underestimated the curvature of approaching left turns
(e.g., the images at 200.23 and 200.25 km) before
switching to non-road classifications. This may have
been partially due to the temporal filtering in the no
road classifier—there is a lag associated with the ac-
cumulation of evidence that was especially pronounced
here as the scene was changing so rapidly.

Illumination conditions may also have played a role
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(a1) (b1) (c1)

72.74 72.76 72.78 72.80

(a2)

145.57 km 145.60 145.63 145.66

(b2)

200.19 200.21 200.23 200.25

200.27 200.29 200.31 200.33

(c2)

Fig. 19. Details of RoadCompass’s output on H1ghlander: (a1-c1) are aerial pictures of areas seen from ground in (a2-c2) sequences. (a)
Making a hard left turn ([72.7, 72.8] km); (b) Going through a tunnel ([145.57, 145.66 km]); (c) Beginning of Beer Bottle pass ([200.19,
200.33] km)
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Fig. 20. RoadCompass’s output on H1ghlander at 5 km intervals, with km marker number noted below each image (compare to the map in
Figure 18). The road confidence threshold used here is -0.05.
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in degrading performance. Dust build-up on the camera
lens as H1ghlander approached Beer Bottle pass was
immense, as the 200 km image in Figure 20 shows.
Moreover, for certain headings the late-afternoon sun
cast a semi-circular shadow of the camera’s housing
on the lens that may have biased dominant orientation
estimates (e.g., the 200.23, 200.25, 200.27, and 200.33
km images in Figure 19(c2)).

As a final set of images summarizing RoadCompass’s
performance on the CMU H1ghlander 2005 GCE data,
we present a digest of its output along the entire course
in Figure 20. The images are samples from fixed 5 km
intervals in order to show the range of different terrain
and road types encountered, as well as the progression
of illumination conditions over the course of the day.

V. CONCLUSION

We have presented a system for road following on
desert and unpaved roads that relies on road texture
analyzed from an on-board camera and ladar-based
structural information to robustly identify and track
the road. The on-board component recovers the road
vanishing point in near real-time for many kinds of
surface materials with no tuning, and it analyzes its
own performance and automatically turns off when the
vehicle is not near a road. Based on the experiments run
live and on logged data, this is the first system capable
of making steering decisions for a vehicle over such a
wide range of road types based primarily on vision with
no previous training.

Despite the emphasis on desert scenarios here, Road-
Compass’s algorithmic foundations are applicable to
urban imagery such as that encountered by entrants in
the 2007 DARPA Urban Challenge, which took place in
Victorville, CA on November 3, 2007. Figure 21 shows
some results from running RoadCompass on image se-
quences captured by Stanford’s robot Junior during
qualifying runs. Figures 21(A1-A2) are from NQE Area
A, where the ability of vehicles to merge with live traffic
on a loop course was tested. A1 shows the road direction
estimate along a straight segment, while A2 shows a no
road classification at a T intersection. Figures 21(C1-
C3) are from NQE Area C, where vehicles’ ability to
obey precedence rules at four-way stops and to make
U-turns when the road was blocked were tested. C1
shows RoadCompass’s correct road direction estimate
as a blockage is approached in near-glare conditions,
while C2 shows RoadCompass seeing no road midway
through a U-turn. In C3 Junior is driving back the other
way around a curve and with shadows across the road.

Versus desert environments, urban roads exhibit sev-
eral important differences that bear on the effectiveness
of an unmodified RoadCompass. First, paved roads have

less road-oriented texture (mostly just curbs and lane
lines), so the vanishing point estimate tends to depend
on fewer votes. This allows any cast shadow textures to
have a proportionally greater bias on the estimate, and
there is generally a higher density of shadows in urban
settings due to trees and buildings. While Figures 21(C3)
and other results in this paper demonstrate that shadows
are mostly harmless, to harden RoadCompass against
heavily-shadowed areas we would certainly experiment
with explicit shadow removal as described in Section III-
B. Another factor that would necessitate modifications
to RoadCompass for effective urban operations is the
frequency of intersections and 90-degree turns, which
both cause the system to lose its sense of direction.
These could be prevented by using an omnidirectional
or active-pointed camera. Finally, another vehicle just
in front of ours may occlude a large portion of the road
ahead. We would want to detect these [44], [45] and
either mask them out or switch to a following mode.

There are many other improvements possible to move
RoadCompass toward a more reliable, standalone sys-
tem. Because of its development as part of a larger
system for Caltech’s vehicle, for example, we have not
really addressed speed control. Situations requiring so-
phisticated speed control in addition to steering include
not only turns, downhills and uphills, and small (and
not-so-small) bumps and dips, but also include changes
in the material properties of the road: e.g., sand, gravel,
mud, puddles, ice, snow. The algorithm as it stands has
no idea that the middle of the road is anything but
homogeneous and benign. [46] presents some interesting
recent work on this subject.

The core of the RoadCompass algorithm could also
be upgraded in several regards, including going to a
higher resolution for vanishing point voting for addi-
tional precision. It would also be interesting to work on a
night-operation capability: because RoadCompass does
no color classification or the like it is very insensitive
to lighting conditions, yet our initial experiments trying
to run the algorithm with the vehicle’s headlights on
encountered problems. These are likely fixable with
some adjustments to the camera hardware and some
software parameters.

Finally, a major area of ongoing work is incorpo-
rating aerial imagery and digital elevation data into
longer-range planning and anticipation. We have begun
promising preliminary work using skeletonization and
watershed image processing techniques to extract a road
network in the vicinity of the vehicle, offering more
choices to the vehicle and possibly graph-based path-
planning.
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(A1) (A2) (C1) (C2) (C3)
Road direction estimates

Corresponding vote functions

Fig. 21. Results of running RoadCompass on image sequences from Stanford’s 2007 DARPA Urban Challenge qualifying runs. The first two
images are from the merging test in NQE Area A; the last three are from the roadblock test in NQE Area C as Junior (C1) approaches a
blockage, (C2) is in the middle of a U-turn away from it, and (C3) subsequently drives away (images courtesy of the Stanford Racing team).
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