
Trail Following with Omnidirectional Vision

Christopher Rasmussen Yan Lu Mehmet Kocamaz

Abstract— We describe a system which follows “trails” for
autonomous outdoor robot navigation. Through a combination
of visual cues provided by stereo omnidirectional color cameras
and ladar-based structural information, the algorithm is able
to detect and track rough paths despite widely varying tread
material, border vegetation, and illumination conditions. The
approaching trail region is simply modeled as a circular arc
of constant width. Using an adaptive measure of color and
brightness contrast between a hypothetical region and flanking
areas, the tracker performs a robust randomized search for the
most likely trail region and robot pose relative to it with no
a priori appearance model. Stereo visual odometry improves
tracker dynamics on uneven terrain and permits local obstacle
map maintenance. A motion planner is also described which
takes the trail shape estimate and local map to plan smooth
trajectories around in-trail and near-trail hazards. Our system’s
performance is analyzed on several long sequences with diverse
appearance and structural characteristics using ground-truth
segmentations.

I. INTRODUCTION

Roughly linear terrain features such as roads, hiking trails,
rivers, powerlines, and pipelines are common in man-made
and natural outdoor environments. Whether intentionally
or not, all of these features can be navigationally useful
to unmanned ground or aerial vehicles in that they both
“show the way” and “smooth the way” to a robot following
them. Finding and keeping to a path by driving along it or
flying above it can greatly simplify an autonomous robot’s
perceptual and motion planning tasks and mitigate hazards
which occur in general cross-country navigation. The relative
narrowness and continuity of such features implies a certain
commonality in the framework of detection, tracking, and
control, but each path type has unique appearance and
structural characteristics worthy of investigation.

In this paper we describe a robotic system (shown in
Figure 1 and described in detail in Section V) for following
hiking and mountain-biking trails through varied field and
forest terrain which relies primarily upon vision and secon-
darily upon ladar to discriminate the drivable region ahead.
We assume that the trail is everywhere traversable with a
wheeled vehicle (although combining our approach with step
planning [1] is an interesting prospect), and also that the trail
is non-branching and non-terminating, removing considera-
tion of intersection and dead-end detection. In essence, the
task is analogous to “lane keeping” from autonomous road
following, involving repeated estimation, or tracking, of the

The authors are with the Dept. of Computer & Information Sciences,
University of Delaware, Newark, DE, USA. Their e-mail addresses are
cer@cis.udel.edu, yanlu@udel.edu, and kocamaz@udel.edu,
respectively.

Fig. 1. View of robot in testing area

gross shape and appearance attributes of a previously-found
trail.

The two recent DARPA Grand Challenges (DGC) required
vehicles to follow rough roads, but GPS and ladar were
sufficient for most successful teams [2], [3]. Vision was
not primary for any team, although it was exploited as a
means of detecting long-range obstacles for speed control [4]
and as a road direction estimator [5]. The navigational tasks
in the DARPA Urban Challenge required more road shape
estimation ability, and several teams detailed approaches
using primarily vision [6] and rich structural information
based on a Velodyne ladar [7].

General off-road navigation using vision and ladar was
investigated in the DARPA PerceptOR program [8], which
preceded the DGC. In the recent DARPA LAGR program
robots had stereo vision instead of ladar and were looking
only for open space on their way to a GPS goal, although
in constrained areas this was often coincident with path
following. Along the lines of [4], a method to learn long-
range obstacle appearance from short-range stereo labels
was given in [9]. Among LAGR-derived work, [10] and
[11] stand out for explicitly looking for path-like corridors
of homogeneous color or texture along the ground. The



Fig. 2. Sample trail sections (left camera view). The first image is from the field dataset, the next three from mixed, and the last from forest (see Section
VI)

European ELROB competitions have also required path-
following skills; one robot effectively followed paths by
finding “passages” among scattered trees in ladar data [12].

We reported on an efficient method of segmenting trails
in IROS last year [13]. In that paper we took a top-down
approach by hypothesizing deformations of a canonical trail
shape and then scoring them for generalized color contrast.
The trail was assumed to be locally straight and only the
parameters of its image projection were tracked, meaning
that each hypothesized shape was a triangle. This worked
well on a wide variety of trail images taken from different
perspectives and with different cameras, and was sufficient
for reactive steering on our robot. However, it was not suited
to metric motion planning or the use of vehicle dynamics in
the tracker.

In this paper we describe how we have moved the tracking
formulation to vehicle coordinates, added curvature to the
trail state, and changed to an omnidirectional camera while
retaining the core image processing algorithm. There are
multiple benefits offered by omnidirectional imagery (rep-
resentative images from our testing area are shown in Figure
2). First, a wide lateral field of view is beneficial where
there is sharp trail curvature or a split, so that all regions of
interest are in view simultaneously. Second, by seeing behind
the robot, there is more data to confirm trail segmentation,
shape estimation, and motion estimation results. Third, self-
calibration of sensor placements is simpler with the robot
chassis in view, as is dynamic color calibration using a visible
color chart.

With this new state formulation we are able to employ
a more sophisticated motion planner that resembles the
on-road planners used in the Urban Challenge [14], [15].
Furthermore, we describe how stereo imagery from a second
omnidirectional camera is used to estimate planar motion
via visual odometry in the manner of [16]. Wheel-based
odometry is relatively error-prone on sandy trails strewn with
rocks and roots, and having visual motion estimates is useful
for providing state predictions to the trail tracker as well as
maintaining a local map which can be referenced by the
motion planner for obstacle avoidance.

In the following sections we will first review the trail

detection and tracking foundations of the system which
were introduced in [13], then describe each of the new
components introduced above, present experimental results
and limitations, and finally discuss current and future work.

II. TRAIL STATE ESTIMATION

We approximate the trail region R in front of the robot
as a constant-width circular arc with fixed length dmax. The
intrinsic parameters of the trail are thus its width w and
curvature κ. The position of the robot with respect to the
trail is characterized by its lateral offset ∆x from the trail
centerline and the difference θ between its heading angle
and the tangent to the trail arc. Concatenating intrinsic and
extrinsic variables, the current trail state X is a 4-parameter
vector (w, κ,∆x, θ). A sample trail region is diagrammed
in Figure 3(a) in vehicle coordinates and projected to the
omnidirectional camera image in Figure 3(b).

Assuming that a trail is present in an image, our method
for segmenting it is a top-down, maximum likelihood ap-
proach: a number of candidate regions are hypothesized
and scored, and the highest-scoring region is the winner.
Because trail-following requires us to track the trail region
over time, we use particle filtering [17] to incorporate a
prior p(Xt|Xt−1) on the hypotheses which keeps them near
the predicted location of the trail in the current frame as
derived from the robot’s dynamics. Dynamics are estimated
using stereo visual odometry, described below in Section
III. Absolute limits are also set on w and κ based on any
knowledge of the trail properties, as well as on ∆x and θ
under the assumption that the robot is on or nearly-on the
trail.

A. Appearance Likelihood

For a single image we have no a priori model of the
trail’s color or texture. In this case the primary basis of a
high appearance likelihood is strong contrast between R and
its surround. To be more precise, we define left and right
neighboring regions of the trail as RL and RR, respectively,
as shown in Figure 3(a) and (b).

A number of different measures have been proposed to
measure appearance contrast between image regions. Follow-
ing our earlier work [13], we adapt a technique from [10]



(a)

(b)

(c) (d)

Fig. 3. (a) Robot with candidate trail region and neighboring regions,
ladar hits (grid circles are at 1 m intervals); (b) Candidate trail region, ladar
projected to camera; (c) LAB space k-means labels (colored with mean
RGB of each cluster; gray frame is mask); (d) AB space k-means labels

based on histograms of k-means cluster labels in CIE-Lab
color space. Using this method, a set of color textons is first
created from the input image by computing an n-dimensional
feature vector at each pixel (x, y).

CIE-Lab space is a transformation of RGB space in
which the L coordinate encodes lightness or intensity and
the a, b coordinates represent chromaticity. CIE-Lab has the
advantage of greater perceptual uniformity–in it, Euclidean
distance is a somewhat reasonable metric for color similarity.
We consider two possible color feature vectors: LAB, which
uses all three channels, and AB, which uses only the
chromaticity coordinates and is thus nominally illumination-
insensitive (L, which uses only brightness, was also tested
extensively and found not to be helpful except in desaturated
conditions like snow scenes).

Before clustering, textons containing saturated pixels are
set aside. k-means is performed on the valid remaining
textons to identify a small number of common colors in the
image; these are combined with the under- and over-saturated
groups to yield k + 2 final texton labels l1, . . . , lk+2. The
value used in this paper is k = 6.

A trail region R’s color distribution is modeled by a
histogram h = (f1, . . . , fk+2) of the frequencies of the k-
means and saturation cluster labels inside it. This allows
multi-modal color distributions within trails, which is useful
for heterogeneous materials such as leaves or rocks. The
appearance dissimilarity between two regions Ri, Rj is cap-
tured by a histogram distance function; we use the common
chi-squared metric χ2(hi, hj).

Rewarding other characteristics such as trail region interior
homogeneity is also desirable, since trail regions are often
more homogeneous than heterogeneous in color. [18] uses
homogeneity but not contrast, while [19], [20] use a ratio
of contrast to heterogeneity. Our experiments have indicated
that including a homogeneity term in the form of the entropy
of the label histogram H(h) is helpful.

We combine the contrast of a hypothetical trail region R
with its left and right neighboring regions RL and RR and
the entropy of the central region as a weighted sum:

Lappear(R) = α
χ2(h, hL) + χ2(h, hR)

2
+ β(1−H(h))

where the entropy is normalized to [0, 1] based on the number
of clusters k. After some experimentation we have found that
α = β = 0.5 gives good results.

B. Cue selection

An issue of interest is whether the choice of features LAB
or AB to cluster with k-means can affect the algorithm.
Because of the speed of the procedure, it is easy to simply
perform the clustering using each of several alternative sets
of cues. Empirically, we have found that on different images
and in different lighting situations, which cue is chosen can
have a strong effect on the appearance likelihood objective
function that we are trying to maximize. Compare Figures
3(c) (LAB) and (d) (AB), for example. For the same
scene, the LAB clustering clearly achieves a better contrast
between the trail region and the area to the left. The gray
frames in the k-means images show the mask which is used
to exclude the robot chassis and dark corners of the CCD
from image processing, both for accuracy and for efficiency.

Our approach is to do k-means clustering two times, once
for each cue alternative, on every image. This results in two
different histograms hLAB and hAB for every region and
thus two different appearance likelihoods for each region
hypothesis. To smoothly sample both in image space and
cue space, we add a discrete variable to the state in the
particle filter denoting whether a particle is to be scored using
LAB or AB. Particles keep their color space labels with a
probability p and change to the other label with probability
1 − p (we use p = 0.9). This allows the population of



(a) (b)

(c) (d)

Fig. 4. (a) Triangulated stereo matches which are motion inliers, with
tracks; (b) Triangulated inliers with saturation indicating height + ladar hits
for reference; (c) Motion inliers in left image and their matches (yellow)
and tracks (purple); (d) Motion inliers reprojected into right image + ladar
hits, both with vertical height indicators

particles of one kind or another to flourish as illumination
and environmental conditions permit, or to maintain parity
if neither is favored.

Following this procedure is important for robust function-
ing of the tracker. Although LAB is superior for the majority
of images, there are a number for which AB is necessary
to find the best segmentation.

III. MOTION ESTIMATION

We use stereo visual odometry to estimate the frame-to-
frame motion of the robot following the basic approaches
outlined in [16], [21], [22]. Although the robot undergoes
some small pitching and rolling on our testing terrain, our
initial experiments have thus far been limited to recovering a
planar motion consisting of a rotation and forward translation
(∆θ,∆Z). Nevertheless, this has been sufficient for the
dynamics used in the trail tracker particle filter and for
obstacle map maintenance over a 10− 20 m scale.

The OCamCalib Omnidirectional Camera and Calibration
Toolbox for Matlab [23] was used to obtain intrinsics for the
two cameras. Extrinsics were initially estimated with manual
measurements and then refined with bundle adjustment using
levmar [24].

Each camera maintains an independent set of KLT feature
tracks [25]. These are tracked from frame t to t+1 using only
forward matching based on the OpenCV pyramidal optical
flow function. The frame-to-frame fundamental matrix is
robustly estimated and feature track outliers are initially
filtered. Tracks which disappear because of low quality
matches or leaving the image frame are replaced randomly
from a pool of available KLT features which obey minimum
separation from existing tracks.

Mutual matching is performed between the members of the
left and right feature track sets at each time step, and matched

pairs which do not fit the precomputed left-right fundamental
matrix are rejected (although those feature tracks are allowed
to continue). The remaining good matches are triangulated,
first linearly [26] and then using nonlinear minimization [24].

All N triangulated points at time t which track to points
at t + 1 that are also successfully matched and triangulated
constitute a set of putative XZ planar motion vectors. 2-
point RANSAC is used to to robustly recover a 2-D rigid
transform between frames t and t + 1, and then nonlinear
minimization is performed on the NI inliers to arrive at a
final estimate of (∆θ,∆X,∆Z). This is projected to the
nearest kinematically feasible solution (i.e., ∆X is set to 0).
Individual estimates are somewhat noisy, with confidence
proportional to the inlier fraction NI/N , so we perform
temporal smoothing. We have gotten good results using a
cubic smoothing spline (e.g., the Matlab function csaps
with p = 0.01) where each motion estimate (∆θ(t),∆Z(t))
is weighted by NI(t)/N(t) (set to 0 if N(t) = 0).

Some sample tracked features and their triangulations are
shown in blue in Figure 4. Figures 4(a) and (b) show the
triangulated motion inliers in vehicle coordinates. In Figure
4(b) the feature saturation is proportional to height, up to
the level of the SICK ladar points, which are shown in
purple. Figure 4(c) shows the tracked features in the left
image from which the triangulated points were derived, with
arrows indicating their matches in the right image (yellow)
and tracks from previous images (purple). Figure 4(d) shows
the motion inliers reprojected into the right image, with
vertical bars indicating their heights off the ground plane.
Ladar points are also shown for reference–note, for example,
the large tree trunk on the left.

IV. TRAJECTORY PLANNING

We use the stereo motion information obtained from the
methods of the previous section in the tracker dynamics as
mentioned in Section II, but also to stabilize recent ladar
observations into a local occupancy grid map [27]. This
grid map, which travels with the robot, furnishes it with a
picture of the constraints on its forward motion as well as a
“memory” in case it needs to back up. Samples are shown
in Figure 5(a).

Our motion planner is derived from a Dubins car model
[28], which accounts for differential constraints on the
robot’s motion in the form of a minimum turning radius
and rules out reverse motion (as we do not have adequate
rear-facing obstacle detectors) except in extraordinary cir-
cumstances. Under this model, the only maneuvers permitted
are sequences of straight-line and left or right circular arc
segments (a proportional controller in the motor command
handler smoothes transitions between segments). The basic
Dubins planner, which works for all start and end (x, y, θ)
configurations in the absence of obstacles, is used as the
kernel of a lookup-table-like approach to planning along the
trail in the presence of obstacles. Briefly, given the currently
estimated trail region a single ultimate goal pose and a set of
nearer candidate goals are generated and planned for. Each
of these plans is evaluated and possibly pruned based on their



(a)

(b)

(c)

Fig. 5. (a) Local occupancy grids at current robot location created using visual odometry information during runs along field, mixed, and forest (from
left to right); (b) Camera view at current location with current tracked trail state overlaid; (c) Partial global maps with trail and position histories overlaid

trajectories colliding with too many obstacles or leaving the
trail. From the remaining plans whichever terminates closest
to the ultimate goal is selected for execution.

More specifically, given an estimated trail region and an
obstacle map, the ultimate goal pose is set to be a point on
the trail centerline and tangent to it some constant distance
ahead (currently 5 m). If this point is too close to an obstacle,
it is moved to the nearest point in free space within the
trail. Since the goal is defined relative to the robot’s current
location, it constantly recedes as the robot advances, and the
robot constantly replans its motion.

Candidate goal poses are generated in a regular array
spanning the trail region laterally in a series of mini-lanes and
distally from just in front of the robot out to the ultimate goal,
all with θ tangent to the trail. A Dubins plan is constructed
from the current robot position to each candidate goal pose,
and then extended along its mini-lane out to the ultimate
goal distance. Selecting candidate goals along the same mini-
lane but closer to the robot induces more aggressive lane

changes in the manner of “swerves” vs. “nudges” from [2] or
“sharp” vs. “smooth” trajectories from [14]. An example set
of trajectories are drawn as dark green curves in Figure 6(a).
The corresponding camera view, with the candidate motion
plans projected, is in Figure 6(e). For clarity, only the sharper
trajectories are shown.

If a candidate trajectory leaves the trail because it takes
a shortcut across a curved section or requires a 360 degree
rotation, it is removed. Under the assumption that the trail
is never completely blocked and recognizing that many
apparent obstacles are tall grass and “soft” vegetation, the
remaining trajectories are ranked by how many obstacles
they collide with. Among all trajectories tied for the lowest
obstacle density, the one whose endpoint (aka candidate goal
pose) is closest to the ultimate goal pose is selected. This
provides a centering impulse.

Figure 6(b) shows the robot planning to enter the trail.
Trajectories on the left have been removed because they
come too close to off-trail obstacles, whereas trajectories



(a) (b)

(c) (d)

(e)

Fig. 6. Motion planning: (a-d) Selected trajectories (green) and candidates
(dark green) for sample trail segments. The red dot is the ultimate goal pose.
(e) Corresponding camera view for scenario (a) with trail region, trajectories
overlaid.

hugging the right side of the trail do not collide. Figure 6(c)
shows that even for narrow trail sections a path is always
chosen, and Figure 6(d) illustrates how trajectories on either
side of an in-trail obstacle may be considered.

V. EQUIPMENT

The sensors used for the results in this paper are two Point
Grey Flea2 color cameras, a SICK LMS 291 ladar, and a
Hokuyo URG-04LX ladar (GPS was not recorded, though
the robot is equipped with one). Each camera is mounted
about 1.15 m off the ground, pointed straight down and
rotated so that the longer axis of its CCD is oriented in
the direction of vehicle travel. The baseline between them is
0.2 m. The cameras are fitted with omnidirectional Fujinon
FE185C046HA-1 lenses which provide a field of view (FOV)
of 180◦ along the vehicle Z axis and 145◦ along the X
axis. In these experiments the cameras were set for auto-
exposure and auto-white balance. All images were captured
at 640× 480 and downsampled as noted for different vision
modules.

The SICK ladar is mounted on the robot 0.5 m off the
ground facing forward with a sweep plane parallel to the

XZ (i.e., ground) plane. Its FOV is 180◦ and the maximum
range is set to 8 m. The Hokuyo is mounted 1.15 m above the
ground facing down in a sagittal orientation (i.e., its sweep
plane is the Y Z plane). Its FOV is is 240◦ and its maximum
range is 4 m.

The robot used is a Segway RMP 400, with four-wheel
differential steering. The robot’s primary computer is a Dell
Precision M2400 laptop with an Intel Core Duo T9600 2.80
GHz processor and 4 Gb of RAM.

VI. EXPERIMENTS

Our main testing area for trail tracking is a network of
combined hiking/mountain-biking trails in a large regional
park in the mid-Atlantic U.S. The trail section from which
this paper’s data is taken is just over 1 km long and can be
logically broken into three contiguous sections of roughly
equal length comprising (1) open, grassy fields; (2) a mixture
of dense bushes and shorter trees, some overhanging; and
(3) proper forest with relatively sparse understory foliage.
As shorthand, we refer to the datasets associated with these
segments as field, mixed, and forest, respectively. All data
was collected in summer.

The data used here was collected while the robot was
being driven manually and all processing was done offline.
Successful live integration of earlier generations of the
robot’s perception and motion planner modules with motor
control has been demonstrated in previous published work
[29]. Furthermore, earlier versions of the omnidirectional
tracker from Section II and motion planner from Section
IV were used to win an outdoor robotic path-following
competition (www.igvc.org) last year against dozens of
competitors. For the competition the path was demarcated
by lines painted on grass, so the trail likelihood function
was edge-based rather than region-based as in II-A. When
weather and ground conditions at our testing site permit, in-
the-loop experiments will resume.

Our results on the park trail data demonstrate the accuracy
and efficiency of the image-only trail finder and tracker of
Section II on a diverse set of trail images. For each dataset
above, we have manually-generated ground-truth segmen-
tations at regularly-spaced intervals. Out of about 17,000
total image frames captured at 10 Hz, we have ground truth
for 436, or about 1 in 40. These permit us to quantify the
accuracy of our trail region estimates in several ways. First,
the notion of region overlap in the image can be characterized
with the following polygon area overlap formula suggested
by [18]: Overlap(R1,R2) = A(R1∩R2)2/(A(R1)A(R2)).

The median image overlaps with ground truth were 0.361
for the field data, 0.774 for the mixed, and 0.671 for
the forest. Qualitatively, the trail was tracked quite well
throughout. The last two numbers are quite good, given how
difficult many of the images are, but the first number appears
relatively low, especially since the field is visually the highest
contrast area. We can look more deeply by directly measuring
the median absolute error in the trail heading, width, lateral
offset, and curvature estimates. These are shown in Table I.



Overlap θ (degs.) ∆x (m) w (m) κ (1/m)
field 0.361 2.4 0.07 0.20 0.017

mixed 0.774 2.9 0.05 0.05 0.026
forest 0.671 6.6 0.09 0.10 0.065

TABLE I
MEDIAN IMAGE OVERLAP SCORES AND MEDIAN ABSOLUTE ERRORS

FOR DIFFERENT TRAIL STATE VARIABLES, RELATIVE TO GROUND TRUTH

(436 IMAGES TOTAL)

Fig. 7. Output of [30], this paper on selected image from forest

The width error for the field data was 0.20 m, which was
notably high. In this case the median ground truth width
was a narrow 0.14 m (a common width for mountain bike
paths), which was smaller than a width minimum parameter
used in the particle filter. The k-means clustering also often
grouped trail dirt pixels with yellow grass growing beside the
trail (even for larger k), making the trail look a little wider
in the simplified color space searched by the particle filter.
An example of this can be seen in the leftmost image of
Figure 5(b). Every other parameter was close to nominal, so
it seems that most of the overlap error was due to a consistent
overestimate of the trail width.

It is difficult to compare our results directly to other
work given the differences in sensors between platforms and
objectives of each system. The surface layout classifier of
[30] is not a fair comparison, especially with the distortion
of the omnidirectional lens, but it is helpful as a baseline.
Their system does a a credible job of finding nearby ground
in a variety of “normal” images we have previously tested,
but roads and trail regions do not seemed to be favored over
rougher ground. On our images the output is not useful; one
example is shown in Figure 7.

Our visual-odometry-based motion estimates correlate
well with conventional odometry derived from the wheel
velocities of the Segway RMP 400 base. Plots of per-frame
forward motion ∆Z and rotational motion ∆θ for the forest
data are shown in Figure 8, with the visual odometry values
shown in red and Segway odometry values shown in green.
Pearson’s correlation coefficients are shown in Table II (p <
0.001 for all values).

VII. CONCLUSION

This paper has presented a system for robotic following of
hiking- and mountain-biking-type trails using a combination
of visual and ladar cues. The core trail-finder component
is fast and robust across a wide range of illumination
conditions and types of terrain. Promising preliminary work

∆Z ∆θ
field 0.87 0.73

mixed 0.90 0.82
forest 0.90 0.88

TABLE II
CORRELATION COEFFICIENTS BETWEEN VISUAL ODOMETRY

PER-FRAME FORWARD MOTION (∆Z) AND ANGULAR MOTION (θ)
ESTIMATES AND SEGWAY WHEEL ODOMETRY

on incorporating stereo visual odometry into the framework
was also discussed, although some work needs to be done
to further optimize this module for real-time operation.

In addition to using stereo for motion estimation, we are
also investigating stereo-based static obstacle detection as
another layer in the local occupancy grid map. The robot’s
SICK ladar, which is excellent for large obstacle detection,
cannot see smaller rocks, logs, or negative hazards such as
off-trail drop-offs and ditches. Our feature-based approach
to visual odometry is not well-suited to this task, and we
are evaluating dense stereo methods that will work with our
omnidirectional images.

Thus far we have not used GPS information even where
available (maintaining satellite lock can be difficult in ar-
eas like forest). However, GPS could help smooth motion
estimates and in conjunction with trail maps would permit
anticipation of forks/intersections. We are also looking at
doing full 6-DOF motion estimates from visual odometry
for pitch, roll, etc. estimation to make the local map more
accurate. Finally, the color checker attached to the robot
is not yet being used for color constancy and exposure
compensation calculations; these could help considerably.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
National Science Foundation under award 0546410.

REFERENCES

[1] J. Kolter, Y. Kim, and A. Ng, “Stereo vision and terrain modeling for
quadruped robots,” in Proc. IEEE Int. Conf. Robotics and Automation,
2009.

[2] S. Thrun, M. Montemerlo, et al., “Stanley, the robot that won the
DARPA grand challenge,” J. Field Robotics, vol. 23, no. 9, 2006.

[3] C. Urmson et al., “A robust approach to high-speed navigation for
unrehearsed desert terrain,” J. Field Robotics, vol. 23, no. 8, pp. 467–
508, 2006.

[4] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski, “Self-
supervised monocular road detection in desert terrain,” in Robotics:
Science and Systems, 2006.

[5] C. Rasmussen, “Roadcompass: Following rural roads with vision +
ladar using vanishing point tracking,” Autonomous Robots, vol. 25,
no. 3, October 2008.

[6] A. Huang, D. Moore, M. Antone, E. Olson, and S. Teller, “Multi-
sensor lane finding in urban road networks,” in Robotics: Science and
Systems, 2008.

[7] C. Urmson et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” J. Field Robotics, vol. 25, no. 1, 2008.

[8] A. Stentz, A. Kelly, P. Rander, H. Herman, O. Amidi, R. Mandelbaum,
G. Salgian, and J. Pedersen, “Real-time, multi-perspective perception
for unmanned ground vehicles,” in AUVSI, 2003.



Fig. 8. Top: estimated per-frame forward motion ∆Z using visual odometry (red) vs. Segway odometry (green) for forest data; bottom: estimated angular
motion ∆θ.

[9] R. Hadsell, P. Sermanet, A. Erkan, J. Ben, J. Han, B. Flepp, U. Muller,
and Y. LeCun, “On-line learning for offroad robots: Using spatial label
propagation to learn long-range traversability,” in Robotics: Science
and Systems, 2007.

[10] M. Blas, M. Agrawal, K. Konolige, and S. Aravind, “Fast color/texture
segmentation for outdoor robots,” in Proc. Int. Conf. Intelligent Robots
and Systems, 2008.

[11] G. Grudic and J. Mulligan, “Outdoor path labeling using polynomial
mahalanobis distance,” in Robotics: Science and Systems, 2006.

[12] C. Armbrust, T. Braun, T. Fohst, M. Proetzsch, A. Renner, B. Schafer,
and K. Berns, “Ravon — the robust autonomous vehicle for off-road
navigation,” in IARP Workshop on Robotics for Risky Interventions &
Environmental Surveillance, 2009.

[13] C. Rasmussen, Y. Lu, and M. Kocamaz, “Appearance contrast for
fast, robust trail-following,” in Proc. Int. Conf. Intelligent Robots and
Systems, 2009.

[14] D. Ferguson, T. Howard, and M. Likhachev, “Motion planning in
urban environments: Part I,” in Proc. Int. Conf. Intelligent Robots and
Systems, 2008.

[15] M. Montemerlo et al., “Junior: The Stanford entry in the urban
challenge,” J. Field Robotics, 2008.

[16] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry for ground
vehicle applications,” J. Field Robotics, vol. 23, no. 1, 2006.

[17] A. Blake and M. Isard, Active Contours. Springer-Verlag, 1998.
[18] S. Sclaroff and L. Liu, “Deformable shape detection and description

via model-based region grouping,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 23, no. 5, 2001.

[19] G. Mori, X. Ren, A. Efros, and J. Malik, “Recovering human body
configurations: Combining segmentation and recognition,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2004.

[20] X. Ren and J. Malik, “Learning a classification model for segmenta-
tion,” in Proc. Int. Conf. Computer Vision, 2003.

[21] M. Agrawal and K. Konolige, “Real-time localization in outdoor
environments using stereo vision and inexpensive gps,” in Proc. Int.
Conf. Pattern Recognition, 2006.

[22] M. Havlena, T. Pajdla, and K. Cornelis, “Structure from omnidirec-
tional stereo rig motion for city modeling,” in VISAPP, 2008.

[23] D. Scaramuzza, “Omnidirectional vision: from calibration to robot
motion estimation,” Ph.D. dissertation, ETH Zurich, Switzerland,
2008.

[24] M. Lourakis, “levmar: Levenberg-Marquardt nonlin-
ear least squares algorithms in C/C++,” Available at
http://www.ics.forth.gr/˜lourakis/levmar/.
Accessed November, 2009.

[25] J. Shi and C. Tomasi, “Good features to track,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 1994.

[26] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2000.

[27] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[28] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[29] C. Rasmussen, “Shape-guided superpixel grouping for trail detection
and tracking,” in Proc. Int. Conf. Intelligent Robots and Systems, 2008.

[30] D. Hoiem, A. Efros, and M. Hebert, “Recovering surface layout from
an image,” Int. J. Computer Vision, vol. 75, no. 1, October 2007.


