
TREE TRUNK DETECTION USING CONTRAST TEMPLATES

Yan Lu and Christopher Rasmussen

Department of Computer and Information Sciences
University of Delaware, Newark, DE, U.S.A.

ABSTRACT

We propose a simple contrast-based method for tree detection and
shape estimation from ground-plane perspective images for purposes
of counting, classification, modeling, or robotic obstacle avoidance.
Under the assumption that tree trunks are relatively narrow and verti-
cal shapes which strongly differ in appearance from the scene back-
ground and have boundaries of opposite contrast, we apply a bank of
bar filters parametrized from camera intrinsics combined with trunk
location and diameter limits, and integrate results vertically. Non-
maximum suppression is applied to candidates in the resulting trunk
likelihood image. We present results demonstrating the effectiveness
of our tree detection algorithm on a variety of forested images ob-
tained directly from our robot as well as sampled from the web, and
quantify performance using ground truth on a subset of those im-
ages. We also compare the results of our method with several related
published approaches.

Index Terms— Feature extraction, image segmentation,
robot vision systems

1. INTRODUCTION

Trees are common objects in outdoor environments, and detecting
them robustly in images taken from a ground-level perspective is a
challenging problem with several applications. First, it may be de-
sirable to count, classify, or model trees [1, 2] in scenes containing
buildings, people, or other types of vegetation, necessitating seg-
mentation of tree-containing regions as an initial step. Also, trees are
important in outdoor robot navigation both as obstacles and potential
landmarks. In related work [3, 4], we have studied robotic hiking and
mountain-bike trail following in a variety of terrain types based on
color appearance contrast. In forested terrain, trees are of course the
most prominent obstacles affecting motion planning, and we would
also like to carry out the above classification and modeling tasks
autonomously. Therefore, it is both helpful and necessary to explic-
itly detect trees rather than to simply lump them in with other non-
traversable obstacles based on scene structure derived from stereo
vision or laser range finders [5, 6, 7, 8, 9] or local appearance con-
trast [10, 11].

In this paper, we propose a simple yet effective contrast-based
approach to detect and parametrize approximately vertical tree
trunks in a wide variety of scene types. Fig. 1(a) shows an exam-
ple scene from our robot dataset. Because it was captured by an
omnidirectional camera, the image was first warped to a panoramic
projection such that tree trunks become vertical (as seen in cropped
format in Fig. 1(b)), but this is not necessary in general. Tree can-
didates are searched for in the image at discrete trunk diameters
and distances (the gray lines in (b)). Rectangular tree trunk regions

Author e-mail: yanlu@udel.edu and cer@cis.udel.edu.

(a) (b)

(c) (d)

Fig. 1: Sample tree image and detection results. (a) Raw omnidi-
rectional image from robot-collected dataset; (b) Warped panoramic
image with depth lines at 1 m intervals and tree detections overlaid;
(c) “Unwarped” tree detections; (d) Stereo depth map for same scene
(note ragged edges and missing disparity values).

detected based on the technique described in the next section are
shown in Fig. 1(b), and their unwarped locations are shown in the
original omnidirectional image in Fig. 1(c).

Considering alternative techniques, stereo depth maps such as
the one in Fig. 1(d) using OpenCV’s semi-global block matching
function [12] are problematic due to noise and holes which distort
the shape and the boundaries of the trees, especially for cluttered
scenes. Pixel or patch/superpixel classification have also been used
for appearance-based traversability estimation [10, 11]. Such meth-
ods are not directly applicable in our scenario, because our goal is
to explicitly estimate the position and the size of trees in the scene,
but post-processing of such low-level obstacle classification results
is possible. The method of [6] is most similar to ours in that it per-
forms vertical grouping of features, but they detect left and right tree
trunk edges separately and then try match them by looking for pairs
of edges of opposing contrast. Such a method is prone to errors in
the matching stage, and tree trunk segments may not be linked to-
gether. In this work, we parametrize tree hypotheses in the ground-
plane coordinates, detect both edges of the tree at the same time, and
explicitly link detected trunk sections all the way to the ground.



2. TREE DETECTION BASED ON CONTRAST
TEMPLATES

Tree trunks that are different in appearance from their background
will have boundaries of opposite contrast, and they are nearly ver-
tical in the perspective images with a normally-held camera. Given
these two characteristics, we apply bar filters as contrast templates
to extract vertical features of varying widths in the scene. The tree
candidates are searched depth by depth. For each depth, given the
range of tree diameters in meters and the camera parameters, we
can calculate the range of diameters in pixels, which determines the
number of bar filters of different sizes that should be applied at that
depth level. In order to facilitate the search procedure, we discretize
the depth and the filter sizes. Two levels of 1-D non-maximum sup-
pression are then performed to obtain final detection results.

2.1. Camera Calibration

The omnidirectional camera used to capture the scene is fully cal-
ibrated, with the OCamCalib Omnidirectional Camera Calibration
Toolbox for Matlab [13] used to obtain intrinsics and extrinsics esti-
mated using ground plane fiducials in the lab. This allows us to warp
omnidirectional images to a panoramic view (shown in Fig. 1) such
that the edges of tree trunks in the warped image are vertical. We
masked out the robot chassis and peripheral pixels which are on the
sides of the robot or not imaged.

For web images (described in the Results section) for which
the calibration is unavailable, we used reasonable default parame-
ters for horizontal and vertical fields of view and manually indicated
the horizon line to estimate camera tilt.

2.2. Depth and Filter Size Discretization

For navigation and classification purposes, we are most interested
in tree trunks that are within a certain distance of the camera, so
we only search for tree trunks whose bottom positions are within a
meters in depth. To facilitate the search procedure, we discretize the
depths. Fig. 1(b) shows the images overlaid with depth lines up to
8 m in front of the robot with a depth step of 1 m. Due to a slight
rotation offset in the roll angle introduced at the stage of camera
mounting, these depth lines are not perfectly horizontal in the robot
panoramic images.

We define the range of tree diameters in meters to be r =
[d1, d2] and assume that trees’ bases are on the ground plane.
Then, the range of tree diameters in pixels at a particular depth
an is Ran = [D1an

, D2an
], where D1an

= d1 ∗ anp/an,
D2an

= d2∗anp/an, and anp is the depth of an in pixels which can
be calculated from camera parameters. The range Ran determines
the sizes of bar filters to be applied at depth an. It is time-consuming
and also not necessary to apply bar filters associated with every value
in Ran . Similar to how we discretize the depth, we select from Ran

a few values for the sizes of bar filters at depth an such that these
values spread out among Ran .

2.3. Bar Filters

Considering that tree trunks are strong vertical features of certain
widths in the image, we apply bar filters of different sizes on the
image to extract the features. The kernel function of the bar filter is

x′ = y sin(θ), y′ = y cos(θ),

B(x, y) = exp(−0.5 ∗ (
x′

sx

2

+
y′

sy

2

)) cos(2πfx′), (1)

(a) Bar filters (b) I (c)

(d) I21 (e) I41 (f) I61 (g) I90

Fig. 2: (a) Subset of bar filters with sx ∈ {21, 41, 61, 90} (sy = sx,
f = 1/(2 ∗ sx), and θ = 90o); (b) Input panoramic image I; (c)
Values of Sbar(j, an) across every column visualized by overlaid
curves when an ranges from 1 m to 8 m and sx ranges from 11 to
107. The value of sx is indicated by the intensity of the curve. Larger
sx is colored in higher intensity. (d)-(g) Results after convolving the
bar filters with the green channel of I .

where sx and sy are half width and height of the kernel, x ∈
[−sx, sx], y ∈ [−sy, sy]. A bar filter of size sx is applied to find
trees of width sx in the image. In the spatial domain, the bar filter
is a Gaussian kernel function modulated by a 1-D sinusoidal wave
in the horizontal direction. We adapt our bar filter from Gabor filter,
and the difference is that, for Gabor filter, the Gaussian kernel func-
tion is modulated by a 2-D sinusoidal plane wave. We make such a
change because we do not want the value varies in the y direction
for the bar filter. The frequency and orientation of the bar filter are
set to be f = 1/(2 ∗ sx) and θ = 90o. Fig. 2a shows a subset
of bar filters we apply for our experiment. The results, Isx , after
convolving these bar filters with the green channel of Fig. 2b are
shown in Figures 2d to 2g, and the results are normalized to 0-255
for display purpose.

From the results, an sx-sized bar filter correctly reacts to vertical
features of width sx. For dark trees with bright background as the
case shown in Fig. 2b, their convolved values with bar filters are
negative, and they appear dark in the resulting images. The results
are more smooth when sx is larger due to the effect of Gaussian
smoothing incorporated in the bar kernel.

2.4. Tree Candidate Selection

We look for tree candidates depth by depth. For each discretized
depth an, we apply bar filters whose sx are chosen from Ran . Once
the bar filtered result Isx is obtained, a normalized summed-up value
Sbar(j, an) is calculated for every column j of Isx such that

Sbar(j, an) =

i=rnj∑
i=0

Isx(i, j)/(sx ∗ sx ∗ n ∗ an). (2)

In the above equation, Isx(i, j) is the pixel value of Isx at row i
and column j, and rnj is the row number of the depth line an over-
laid on the image at column j. We add values of Isx(i, j) starting
from row rnj all the way up to the top of the image along column
j for Sbar(j, an). Then, Sbar(j, an) is normalized with respect to
filter size sx, number of pixels added n, and the depth an, so that
Sbar(j, an) is comparable across different values of sx, an, and n.



(a) (b) (c)

Fig. 3: (a) Tree candidates extracted across all depths and values of
sx for the image from Fig. 2(b); (b) Candidates after non-maximum
suppression along the horizontal direction; (c) Bottom positions and
sizes of detected trees on polar grid with circles at 1 m intervals.

Masked pixels are excluded for this calculation. In Fig. 2c, the val-
ues of Sbar(j, an) are visualized by curves overlaid on the images
when an ∈ [1, 8] m and sx ∈ [11, 107].

From Fig. 2c, trees align well with the positions where local
minima of Sbar(j, an) occur. Therefore, we first extract tree candi-
dates by searching depth by depth across all sizes of bar filters for
local minima whose values of Sbar(j, an) also satisfy Sbar(j, an) <
α, where α is the threshold that triggers a detection. The shape of a
tree candidate is parameterized by a rectangle with its bottom aligned
with rnj . Its width is the value of sx, and its center is (rnj/2, j).
Fig. 3a shows all tree candidates extracted from the local minima
shown in Fig. 2c with α = −4. Then, we apply two levels of non-
maximum suppression, first in the horizontal direction (Fig. 3b) and
then in the vertical direction on the value of Sbar(j, an) that is as-
sociated with each candidate, to obtain the final detections already
shown in Fig. 1(b). The corresponding locations in the omnidirec-
tional image are shown in Fig. 1(c) with the value of Sbar(j, an)
for each detection indicated. Fig. 3c shows the bottom positions and
the sizes of these detected trees in the obstacle map, given camera
parameters.

3. RESULTS

Here we show results of testing our tree detection algorithm on three
sources of images: (1) an omnidirectional image dataset collected
from our robot along a hiking trail in a forested area of the mid-
Atlantic U.S.; (2) a set of 38 tree and non-tree images collected from
the web, and (3) selected images from other papers [6, 11] that pro-
pose methods to solve similar problems. We have also tried the pop-
ular machine-learning-based HOG object detection algorithm [14]
on our dataset.

There are about 5, 200 total image frames captured at 10 Hz
in the omnidirectional image robot dataset. Of these, we gener-
ated ground truth by manually labeling trees in a subset of 118 im-
ages. Our algorithm searched for trees over a range of diameters
r = [0.2, 0.8] m and a depth range of [1, 8] m with a depth step of
1 m. Five bar filters were applied at each depth with sizes picked
to evenly cover the tree diameter range in pixels at that depth level.
The images in Fig. 4(a) show the results of our tree detector on some
images from this dataset when the trigger threshold α = −4. Gener-
ally, our method does find tree up to 8 m away with a good estimate
of their positions and sizes despite some significant variation in ap-
pearance. For example, the appearance of the detected nearby trees
is quite different from those detected far away due to different levels
of details of tree bark textures. Moreover, our detector is robust to
partial occlusion by under-story foliage that blurs the tree and back-
ground boundaries. We also show some failure cases in the last col-
umn of Fig. 4(a). In the first row the size of the tree is not detected
correctly due to its having a very dark region whose contrast with the

(a)

(b)

Fig. 4: Sample results of our tree detector on (a) Images from robot-
collected omnidirectional image dataset; (b) Tree/non-tree images
collected from the web. Images with no tree detections are tinted
red.

rest of the tree is higher than the contrast between the entire tree and
the background. In the second row a tree is erroneously detected in a
tree-free area because of its clear contrast with the bright trail region,
indicating a need for further texture analysis of detection regions.

Fig. 5: ROC curve of detector re-
sults from robot dataset

The results can be quanti-
fied in several ways. From
the perspective of classi-
fication, we can calculate
the true positive rate and
false positive rate at the
pixel level of the detected
tree trunk regions and gen-
erate an ROC curve as
shown in Fig. 5 by vary-
ing the trigger threshold
α. Another way of quan-
tifying results at the pixel
level is to calculate an
overlap score between the
detected tree regions and
the ground truth. We use
the formula suggested by
[15]: Overlap(R1,R2) =
A(R1∩R2)2/(A(R1)A(R2)). The medianOverlap is 0.58 when
alpha = −4 for the robot-collected dataset. In addition to pixel
level quantification, we can measure the absolute errors in meters
in the bottom center position |∆p| and trunk diameter |∆w| for true
positives. The median |∆p| is 0.28 m and the median |∆w| is 0.1 m
when α = −4.

To further validate the generality of our method, we tested it on
a set of 38 tree and non-tree images culled from Flickr and Google
and cropped and scaled to 320 × 240 as necessary. Some of the
results are shown in Fig. 4(b), and they are fairly good qualitatively
except for some misalignment of tree bottoms due our discretization
of depth for efficiency.

We compared the results from our tree detector with other avail-



Dalal
et al. [14]

Huertas
et al. [6]

Kim
et al. [11]

(a) (b) (c)

Fig. 6: Comparison with other appearance-based algorithms. (a)
Original images; (b) Detection results with our method; (c) Results
from alternative method. For the first row, in columns (b) and (c) the
white polygons are ground truth.

able methods that have been proposed to solve similar detection
problems, with some sample results shown in Fig. 6. The first col-
umn shows the input image, the second our method’s detections in
green, and the third the result of the alternative published method.
The first comparison method we tried was the histogram of oriented
gradients (HOG) detector with SVM [14], a baseline algorithm for
person detection which learns the target object appearance from a
large set of positive and negative examples. The HOG method was
applied to look for tree trunks as objects by training with default pa-
rameters using scaled ground truth tree regions as positive examples
and randomly-picked background patches as negative examples. In
order to avoid masked-out regions, we cropped the panoramic image
to the yellow rectangle shown in the first image of the first row of
Fig. 6. The median Overlap for HOG was a poor 0.10, while the
medianOverlapwas 0.60 on this cropped image set for our method.

We also tested our method on images from [6] and [11]. As
with the web images, we manually indicated the horizon line in each
such image in order to estimate the camera’s tilt angle. From the
results in Fig. 6, our method is able to find most of the trees in the
images except those far away and tiny ones that are beyond our de-
tection scope. By comparison, the advantage of our detector is that
we can localize a tree in the images as a connected component, and
this is especially helpful for robot navigation. Note how for [6] sev-
eral of the tree trunk detections are in disconnected pieces. For [11]
darker patches indicate higher obstacle likelihoods, but without ex-
plicit grouping there is no recognition of trees per se.

4. CONCLUSION

This paper has presented an effective contrast-based algorithm for
tree detection in images for counting, classification, modeling, and

robot navigation. Our experimental results show good performance
using several metrics and relative to existing work in the field. Be-
cause our detector finds trees based on a flexible measure of contrast
between them and the background it does not require an a priori ap-
pearance model and thus works well in variable lighting conditions.
Moreover, the detector is relatively robust to partial occlusions and
distractions because the detection decision is made based on a cu-
mulative score along the vertical extent of each tree hypothesis for
both left and right tree boundaries simultaneously.

We are exploring several avenues for improvement. First, due
to the discretization of search depths the tree bottom positions are
not exact. Smaller depth step sizes can be used to further reduce
the errors at the cost of time, which can be mitigated by some op-
timizations neglected here. Additional region-based analysis can be
performed at the end of the pipeline to help exclude false positives
similar to the one in Fig. 4(h). Along these lines, we are experi-
menting with color and texture classification methods [16]. Finally,
though our stereo depth maps are not currently accurate enough for
direct tree detection (e.g., by depth contrast), we can use them as an
additional check for our detections in the manner of [6].

5. REFERENCES

[1] Z. Huang, C. Zheng, J. Du, and Y. Wan, “Bark classification
based on textural features using artificial neural networks,” in
Advances in Neural Networks - ISNN 2006, Lecture Notes in
Computer Science, pp. 355–360. Springer, 2006.

[2] L. Lopez, Y. Ding, and J. Yu, “Modeling complex unfoliaged
trees from a sparse set of images,” Pacific Graphics, vol. 29,
no. 7, pp. 192–204, 2010.

[3] C. Rasmussen, Y. Lu, and M. Kocamaz, “Appearance contrast
for fast, robust trail-following,” in Proc. Int. Conf. Intelligent
Robots and Systems, 2009.

[4] C. Rasmussen, Y. Lu, and M. Kocamaz, “Trail following with
omnidirectional vision,” in Proc. Int. Conf. Intelligent Robots
and Systems, 2010.

[5] L. H. Matthies, “Stereo vision for planetary rovers: stochastic
modeling to near real-time implementation,” Int. J. Computer
Vision, vol. 8, pp. 71–91, 1992.

[6] A. Huertas, L. Matthies, and A. Rankin, “Stereo-based
tree traversability analysis for autonomous off-road naviga-
tion,” in IEEE Workshop on Application of Computer Vision
(WACV/MOTION), 2005.

[7] J. F. Lalonde, N. Vandapel, D. Huber, and M. Hebert, “Natu-
ral terrain classification using three-dimensional ladar data for
ground robot mobility,” J. Field Robotics, vol. 23, no. 10, pp.
839–861, 2006.

[8] K. Konolige, M. Agrawal, M. R. Blas, R. C. Bolles, B. Gerkey,
J. Sol, and A. Sundaresan, “Mapping navigation and learning
for off-road traversal,” J. Field Robotics, vol. 26, no. 1, pp.
88–113, 2009.

[9] M. McDaniel, T. Nishihata, C. Brooks, and K. Iagnemma,
“Ground plane identification using lidar in forested environ-
ments,” in Proc. IEEE Int. Conf. Robotics and Automation,
2010.

[10] I. Ulrich and I. Nourbakhsh, “Appearance-based obstacle de-
tection with monocular color vision,” in Proceedings of the
National Conference on Artificial Intelligence, 2000.



[11] D. Kim, S. Oh, and J. Rehg, “Traversability classification for
ugv navigation: A comparison of patch and superpixel repre-
sentations,” in Proc. Int. Conf. Intelligent Robots and Systems,
2007.

[12] H. Hirschmuller, “Stereo processing by semi-global matching
and mutual information,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 25, no. 2, pp. 328–341, 2008.

[13] D. Scaramuzza, Omnidirectional Vision: from Calibration to
Robot Motion Estimation, Ph.D. thesis, ETH Zurich, Switzer-
land, 2008.

[14] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2005, pp. 886–893.

[15] S. Sclaroff and L. Liu, “Deformable shape detection and de-
scription via model-based region grouping,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 23, no. 5, 2001.

[16] M. Varma and A. Zisserman, “A statistical approach to texture
classification from single images,” Int. J. Computer Vision, vol.
26, 2005.


