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Abstract We describe a wheeled robotic system which navigates along outdoor
“trails” intended for hikers and bikers. Through a combination of appearance and
structural cues derived from stereo omnidirectional color cameras and a tiltable laser
range-finder, the system is able to detect and track rough paths despite widely varying
tread material, border vegetation, and illumination conditions. The approaching trail
region is efficiently segmented in a top-down fashion based on color, brightness,
and/or height contrast with flanking areas, and a differential motion planner searches
for maximally-safe paths within that region according to several criteria. When the
trail tracker’s confidence drops the robot slows down to allow amore detailed search,
and when it senses a dangerous situation due to excessive slope, dense trailside
obstacles, or visual trail segmentation failure, it stops entirely to acquire and analyze
a ladar-derived point cloud in order to reset the tracker. Our system’s ability to
negotiate a variety of challenging trail types over long distances is demonstrated
through a number of live runs through different terrain and in different weather
conditions.

1 Introduction

Roughly linear terrain features such as roads, hiking trails, rivers, powerlines, and
pipelines are common inman-made and natural outdoor environments. Such features
can be navigationally useful to unmanned ground or aerial vehicles in that they
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both “show the way” and “smooth the way”. Finding and keeping to a path by
driving along it or flying above it can simplify an autonomous robot’s perceptual and
motion planning tasks and mitigate hazards which occur in general cross-country
navigation. The relative narrowness and continuity of such features implies a certain
commonality in the framework of detection, tracking, and control, but each path type
has unique appearance and structural characteristics worthy of investigation.

In this chapterwe describe a robotic system (shown in Fig. 1a) for following hiking
andmountain-biking trails through varied field and forest terrain.We assume that the
trail is everywhere traversable with a wheeled vehicle, and also that the trail is non-
branching and non-terminating, removing the necessity of intersection or dead-end
detection (although our results show that the robot naturally if arbitrarily “chooses”
a fork when given a choice). In essence, the task is analogous to “lane keeping” from
autonomous road following, involving repeated estimation, or tracking, of the gross
shape and appearance attributes of a previously-found trail.

This task echoes the first two DARPAGrand Challenges, which required vehicles
to follow rough roads, but there GPS and ladar were sufficient for most successful
teams [1, 2]. The DARPA Urban Challenge required more road shape estimation
ability, and several teams detailed approaches using primarily vision [3] and rich
structural information based on a Velodyne ladar [4]. In the DARPA LAGR program
robots had stereo vision instead of ladar and were looking only for open space on
their way to a GPS goal, although in constrained areas this was often coincident
with path following. Among LAGR-derived work, [5, 6] stand out for explicitly
looking for path-like corridors of homogeneous color or texture along the ground.

Fig. 1 a Robot in testing area; b Sample view from one omnidirectional camera
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The European ELROB competitions have also required path-following skills; one
robot effectively followed paths by finding “passages” among scattered trees in ladar
data [7]. An approach to non-parametric trail detection and tracking using color +
intensity saliency maps and agents was discussed in [8].

We reported on earlier versions of our omnidirectional trail-following system in
[9, 10]. The former paper discussed a strictlymonocular, appearance-based approach
to discriminating and tracking the oncoming trail region in an image sequence, cou-
pled with differential motion planning within the parametrized trail region while
taking into account ladar-detected obstacles. [10] introduced an approach to incor-
porating stereo-derived scene structure estimates as an additional cue at the trail
segmentation stage.

Here we present a fully integrated system which uses appearance and structure,
not just from stereo but from ladar as well, to find and track the trail in real time.
Previous iterations of the system moved at a constant speed regardless of trail or
obstacle geometry; now the robot can detect loss-of-trail, excessive slope, or dan-
gerous obstacle events to slow down and even stop in order to more deeply analyze
the situation before proceeding. Finally, the differential motion planning system has
been updated to lessen the likelihood of collisions while still preserving a basic
impetus for forward motion. These changes have yielded vast improvements in the
operational performance of the robot in many real-world situations.

2 Methods

As described in [9, 10], the trail region R immediately in front of the robot is
approximated as a constant-width w arc of a circle with curvature κ over a fixed arc
range [dmin, dmax]. The position of the robot with respect to the trail is given by its
lateral offset Δ x from the trail centerline and the difference θ between its heading
angle and the tangent to the trail arc. Grouping these, we have the current trail state
X as the 4-parameter vector (w, κ,Δ x, θ).

Under the assumption that a unique trail is present in each image, it is segmented
in a top-down, maximum likelihood fashion: multiple candidate regions are hypothe-
sized and scored using a trail likelihood function L , and the highest-scoring region is
the winner. Trail-following entails tracking the trail region over an image sequence,
so we use particle filtering [11] to incorporate a prior p(Xt |Xt−1) on the hypotheses
which keeps them near the predicted location of the trail in the current frame as
derived from the robot’s dynamics, as well as setting absolute limits on every state
parameter.
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2.1 Appearance Likelihood

[9, 12] describe our technique for computing the color appearance likelihood of
a candidate region Lappear (R) based on the assumption that the trail region has a
strong color and/or intensity contrast with the left and right neighboring regionsRL

and RR . Briefly, following [5] we compute a small set of exemplar colors for each
image using k-means clustering in CIE-Lab space and assign every pixel one of these
k labels. A label histogram is computed for each candidate region and its neighbors,
and the likelihood is obtained as aweighted combination of contrast and homogeneity
(the entropy of the region color distribution). More details on the approach are given
in [9].

In [9, 10] the color contrast is measured by the χ2 distance between the region
and its neighbors, and that measure is used here for some of our results. However,
this approach can have some problems with certain scenes such as the one shown in
Fig. 8, landmark 3, where several similar shades of grass are found alongside the trail.
After k-means clustering the χ2 metric treats all color clusters as equally dissimilar,
meaning that two shades of green are effectively as different as a green and the brown
of the actual trail. To avoid accidentally locking onto a marginally distinctive grassy
strip beside the trail, we want a measure that preserves some notion of more- and
less-similar colors after clustering. The earth mover’s distance (EMD) [13, 14] has
this property, and so we use this for contrast where noted in Table1.

Extensive experimentation has shown this approach to trail segmentation to work
on a wide range of trail types and illumination conditions without training. Nonethe-
less,we have found that as a practicalmatter camera exposure issues can cause serious
problems, as with any vision algorithm run outdoors [3]. In particular, bright condi-
tions can be very difficult because of issues with glare (i.e., oversaturation) and deep
shadows. These phenomena can obliterate scene colors and make the trail impossi-
ble to see in sections, as in Fig. 2. Our cameras (Sect. 3) are in auto-exposure mode
by default, but we have found that on sunny days the built-in algorithm frequently
gives unsatisfactory results. To mitigate this we implemented our own proportional
exposure control method which computes median intensity over a region of interest
(ROI) directly in front of the robot and keeps it in a target range by adjusting the
shutter speed. This results in much better contrast around the nominal trail region
even if other portions of the image are under- or over-exposed.

2.2 Structure Likelihood

The color/intensity contrast between the trail region and neighboring regions depends
heavily on the trail material and surrounding terrain and vegetation. While it is suf-
ficient in many situations, when the contrast becomes too low trail tracking may
deteriorate or fail entirely. An additional cue which may compensate in these situ-
ations is that of scene structure. Intuitively the trail region itself is expected to be
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Table 1 Testing notes by day

Day Weather Key
changes

Total km Number
of runs

Mean
run (m)

Maximum
run (m)

LW Overcast, few
shadows

– 0.77 7 110 310

S1 Overcast, few
shadows

– 1.57 9 174 410

S2 Strong sun, deep
shadow

Stop-and-scan
for “danger,”
lowered
undersatura-
tion
threshold

1.32 18 73 348

S3 Strong sun, deep
shadow

ROI-based
manual
exposure
control,
image capture
7.5 → 10 fps

1.15 19 61 240

S4 Overcast, light
rain at times

χ2 → EMD for
color
contrast, ladar
traversability
map in
likelihood

1.68 7 240 800

S5 Scattered clouds,
bright sun
alternating
with gray

Speed ∝ trail
confidence,
max-safety +
min-hits
motion
planning

1.74 4 435 984

relatively smooth while off-trail regions are rougher (i.e., have higher height vari-
ance). Moreover, there is often a measurable contrast between the mean height of the
trail and the mean height of regions immediately bordering it, whether due to grass,
bushes, or rocks that do not exist in the trail or because a “trough” in the soil has
been formed from the passage of previous hikers and bikers. More generally, we use
the apparent traversability of a region as a proxy for the likelihood that the trail goes
through it, and then linearly combine this likelihood with the appearance likelihood
described above with weighting chosen based on experiments using ground-truth
trail segmentations from a separate dataset. There are several sources of scene height
information which we exploit:

Stereo A depth map for a subimage of every frame is generated from the robot’s
stereo omnidirectional cameras. We used the OCamCalib Omnidirectional Camera
and Calibration Toolbox for Matlab [15] to obtain intrinsics for the two cameras.
Relative extrinsics were initially estimated with manual measurements and then
refined with bundle adjustment using levmar [16]. Following a common approach
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Fig. 2 Problems with oversaturation and shadows. These images are from test S2 in the mixed
section just north of landmark 4

to computing correspondences in omnidirectional imagery [17–19], we rectify the
relevant portion of each omnidirectional image into a virtual perspective image such
that epipolar lines are image rows; mask out the robot chassis, sensor mast, and
peripheral pixels which are not imaged due to the fisheye lens; and then apply a
standard pixel correspondence algorithm available in OpenCV, semi-global block
matching [20]. The depth map for a sample scene is shown in Fig. 3 at left.

Next, we simplify the approach of [21], which fits planes to robot-sized chunks of
a stereo-derived point cloud and combines them into a traversability map comprising
several hazard-related factors. Full repeated plane-fitting is somewhat expensive, so
we approximate it by computing the median absolute deviation (MAD) of the stereo
height map over robot-sized bins. If μM AD is the mean MAD value or “badness”
within a hypothesized trail region R, then Lstereo

structure(R) = e−αμM AD . When com-
bined with the appearance likelihood above, this formulation rewards smoother trail
region hypotheses and ones which do not contain large step edges (up or down).

Tilting ladar point cloud The exact same MAD approach described for stereo
can be used on any point cloud, and the tilting SICK ladar offers very accurate, very
detailed point clouds when the robot stops long enough to perform a scan. Because

Fig. 3 (Left) Detail of rectified left camera image at landmark 13 (Fig. 8 for full image) and its
stereo depth map; (Right) Corresponding stereo traversability map in red, with SICK ladar obstacles
in purple and estimated trail region and planned robot path also indicated (grid is 1 m per square)
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such point clouds are not available as the robot is moving, Ltilt
structure is not part of

the normal trail likelihood. When they are gathered, however (see Sect. 2.3 for an
explanation of when full tilting ladar point clouds are created), they are used as the
sole cue to infer the trail location, and the normal visual trail tracker’s state is reset to
the value indicated by the point cloud search. Some sample point clouds are shown
in Fig. 4.

Regular ladar obstacles A traversability map of sorts can be created from the
obstacles detected by the SICK ladar in its normal, level configuration as the robot
travels. Because obstacles are only detected in one plane, we cannot use height
variation as above. Rather, we use the simple criterion of proximity: a bin in the
traversability map is incremented if it is within a robot radius of a ladar obstacle. The
“badness” of a hypothesized trail region R is now a sum N of these colliding bins’
values, and Lladar

structure(R) = e−βN . Adding this component to the trail likelihood is
extremely helpful because it will push trail hypotheses toward empty or less-dense
regions of space even when the robot’s visual system is impaired.

2.3 Motion Planning

As described in [9], our motion planner is derived from a Dubins car model [22],
which accounts for differential constraints on the robot’s motion in the form of a
minimum turning radius and rules out reverse motion. The basic Dubins planner,
which works for all start and end (x, y, θ) configurations in the absence of obstacles,
is used as the kernel of a lookup-table-like approach to planning along the trail in
the presence of obstacles. Briefly, given the currently estimated trail region a single
ultimate goal pose and a set of nearer candidate goals are generated and planned
for. Each of these plans is evaluated and possibly pruned based on their trajectories
colliding with too many obstacles or leaving the trail. From the remaining plans
whichever terminates closest to the ultimate goal is selected for execution.

Candidate goal poses are generated in a regular array spanning the trail region
laterally in a series of mini-lanes and distally from just in front of the robot out to

7 13

Fig. 4 Tilting ladar point cloud examples for landmarks 7 and 13 (see Fig. 8 for corresponding
images). The embankment’s drop-off on the right is clearly visible in 13
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the ultimate goal, all with θ tangent to the trail. A Dubins plan is constructed from
the current robot position to each candidate goal pose, and then extended along its
mini-lane out to the ultimate goal distance. Selecting candidate goals along the same
mini-lane but closer to the robot induces more aggressive lane changes in the manner
of “swerves” versus “nudges” from [1] or “sharp” versus “smooth” trajectories from
[23]. In this work the robot also adaptively inserts lanes which maximize clearance
in order to help get through tight spaces. Some examples of plan candidates and their
relation to inferred trail regions are shown Fig. 5.

In previous work [9, 10] the criterion for selecting between plans could be termed
min hits—the path with the fewest collisions was selected. If there was a collision-
free path, so much the better, but under the assumption that there is always a way
forward, this heuristic would always keep the robot moving with the least amount
of obstacle contact—critical for proceeding along trail sections with encroaching
foliage such as landmark 5 in Fig. 8. One problem with this approach, however, is
that even when there is enough room to stay well away from all obstacles, the robot
may pass very close to them because there is no incentive to maximize clearance.
Here we implement a two-level path evaluation technique which first ranks plans in
terms of max safety (the best being a no-collision plan farthest from a collision) and
only falls back to the previous min collisions criterion when every plan within the
trail region collides.

A further safety and performance improvement can be gained by modulating the
robot’s speed based on the state’s trail likelihood (aka “confidence”) and the number
of ladar hits anticipated along the robot’s planned path. When the trail likelihood is
above a certain threshold and the number of expected hits is 0, the robot moves at its
maximum speed. As the confidence that it is accurately tracking the trail decreases
and/or its expectation that it will be touching or near obstacles goes up, the robot
smoothly turns its speed down to a fixed minimum to (a) Allow the trail tracker more
time to find or get a better lock on the trail, (b)Allowmore time for obstacle avoidance
maneuvers towork if the robot is actively turning away froman approaching collision,

Fig. 5 Motion planning examples: Selected trajectories (green) and candidates (dark green) within
the estimated trail regions. The red dot is the ultimate goal pose, while purple dots are obstacles
detected by the SICK ladar. Amax safety, no-collision plan is shown in (a), while every plan collides
in (b), forcing a min hits decision
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and (c) Not hit any solid obstacle as hard if a collision is unavoidable. Giving the
trail tracker more time is critical at very sharp turns such as landmark 11 where the
tracker may lag the angle of the quickly-curving trail, or when the exposure control
is working to obtain better contrast in difficult light conditions.

Finally, as a last line of defense the robot will stop completely and perform a
full tilt ladar scan when it detects “danger” in form of (a) very large roll or pitch
angle which might cause the robot to roll over, or (b) too many collisions in the min
collision plan. By performing a search for the trail in the traversability map generated
from the full point cloud (as detailed above), the robot can correct mistracking caused
by a confused vision system or prevent further travel down a steep slope.

3 Equipment

The primary sensors used for the results in this chapter are two Point Grey Flea2
color cameras and a SICK LMS 291 ladar. Each camera is mounted about 1.15 m
off the ground, pointed straight down and rotated so that the longer axis of its CCD
is oriented in the direction of vehicle travel. The baseline between them is roughly
0.2 m. The cameras are fitted with omnidirectional Fujinon FE185C046HA-1 lenses
which provide a field of view (FOV) of 180◦ along the vehicle Z axis and 145◦
along the X axis. In all of these experiments the cameras were set for auto-white
balance; where noted they were either in auto-exposure mode or had their exposure
manually controlled as described in Sec. 2.1. All images were captured at 640× 480
and downsampled as noted for different vision modules.

The SICK ladar is mounted on the robot about 0.6 m off the ground, 0.4 m in
front of the robot center, and facing forward with a sweep plane parallel (by default)
to the X Z (i.e., ground) plane. Its FOV is 180◦ and the maximum range is set to 8 m.
Its tilt angle is controlled via a Dynamixel EX-106 high-torque servo, enabling the
capture of point clouds when the robot is stationary. All point clouds used in this
paper were gathered over a tilt range of [+15,−45] degs., with the servo moving at
a rate of 20◦. / s and the SICK scanning at 50 Hz.

The robot used is a Segway RMP 400 with four-wheel differential steering. The
default speed for autonomous trail-following here was 0.75 m/s except where oth-
erwise noted, and the minimum turning radius was limited to 0.75 m. 0.6 m-wide
front and rear bumper switches e-stop the motors automatically when pressed with
44.5 N or more of force.

To enable real-timeperformance, system tasks are distributed over several onboard
computers connected via a gigabit Ethernet LAN with IPC message-passing [24].
For all of the experiments described here, the robot’s primary computer for image
processing, tracking, and motion planning is a Lenovo W520 laptop with an Intel
Core i7-2720QM CPU and 8 Gb of RAM. A second computer (a Dell Precision
M2400 laptop with an Intel Core Duo T9600 2.80 GHz processor and 4 Gb of RAM)
handles and logs all data coming directly from—as well as commands sent to—the
front and rear Segway motors, the SICK ladar, and the GPS.
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4 Experiments

All autonomous runs documented here were conducted along a combined hiking/
mountain-biking trail in a mid-Atlantic US state park which we will term WCC. The
trail forms a ≈ 1.7 km long loop covering varied terrain which on a gross scale can
be broken into three largely contiguous types:

(1) Open, grassy fields which are part of a working farm;
(2) A mixture of dense bushes and shorter trees, some overhanging; and
(3) Mature forest, some sections of which have sparse understory foliage and some

which are quite dense.

As shorthand, we refer to these categories as field (0.6 km long), mixed (0.4 km),
and forest (0.7 km), respectively. The entire loop with the types marked is shown in
Fig. 6. A set of notable or difficult locations along the trail are numbered in clockwise
order. A short description of each landmark is given in the table next to the trail map,
and corresponding images are in Fig. 8.

Testing was conducted on six separate days, with one test occurring in late winter
(LW ) and five spanning the summer months (S1–S5). Key differences in weather
conditions for each day are noted in Table1, but seasonal variations in vegetation
were also important. LW presented a challenge with a lack of color contrast (see
Fig. 7 for some examples): the grass was dormant, making the fields predominantly
brown and yellow, and the trail itself was a wet and muddy brown in many places.

Fig. 6 Aerial image of ≈ 1.7 km WCC trail loop. field segments are shown in green, mixed in
yellow, and forest in red (the trail location is approximate in the lower forest area). Numbered
landmarks referenced in the text are briefly described in accompanying table and pictured in Fig. 8.
The area shown is ≈ 0.6 km2
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4 9

Fig. 7 Low color contrast from late winter (LW ) at landmarks 4 and 9 on the WCC trail. See the
summer images of the same landmarks in Fig. 8 for comparison

Trees and shrubs were largely bare and many mixed and forest sections were littered
with leaves. By the time of S1 and S2, spring plant growth made for very strong
color contrast for most of the field and mixed sections. This was true for some of the
forest as well, but under a dense canopymuch of the forest floor remains fairly brown
throughout the year. Moreover, the field grass was long, providing height contrast.
For S3–S5, however, the field grass had been cut short for hay.

Two small sections of the loop were not attempted because of terrain characteris-
tics beyond the current perceptual and motion planning abilities of the robot. These
were a forest segment in the north (landmark 1 in Figs. 6 and 8) and about 20 m
of field just to the east of it (landmark 2). The problematic forest segment has one
2 m section of large, exposed roots and tightly spaced trees that is very difficult to
negotiate even manually, and the field segment has a series of large rocks hidden in
the grass right alongside the trail. Both are pictured in Fig. 8. Although the robot can
track the trail through both of these sections, in the former case it cannot do technical
driving that requires reasoning about balance and tire contacts or making zero-radius
turns and reversing when necessary. In the latter case grass is growing so close to
both sides of the trail that the robot must “brush” past it to proceed (e.g. landmark 5),
and it does not detect or reason about the hidden rocks as solid obstacles which must
be avoided entirely. Therefore, except for one run on day S2 into the rock section
(shown in Fig. 8), all runs were started after the rocks.

Each run generally started immediately after the end of the previous run, but in
several cases the robot was driven forward manually to get past a difficult spot or to
skip a section entirely that it was not deemed ready for. This explains why the total
distance traveled on each day varies and why, for example, LW ’s total distance is
not close to the loop length of 1.7 km: the brown grass contrast was so low that no
field section was attempted. Time constraints on day S2 and low motor batteries on
S3 necessitated skipping the last field section.
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4.1 Results and Discussion

Top-level results are summarized in Table1: over the course of six days of testing as
the system evolved, 64 separate autonomous runs were attempted. A total of 8.23 km
were traveled autonomously by the robot, with a mean run length of 129 m and a
median of about 44 m. The five longest individual runs, in order, were 984, 800, 682,
504, and 410 m.

Results varied based on several factors, with theweather having surprisingweight.
As the table notes, days S2 and S3 were very sunny, and the average run length was
quite low for those days. Of the 33 poor runs which were under 50 m in length,
24 were on these extremely bright days. Even after the ROI-based manual exposure
control algorithm described in Sect. 2.1 was implemented for S3, the light was still
an issue. A major improvement in robustness came with the incorporation of the
ladar traversability map from Sect. 2.2 in the trail likelihood with S4. This helped
the robot navigate areas like landmark 10 in Fig. 8 without being distracted by such
bright patches. In general, the modification of the robot’s perception and motion

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 8 Robot-view images of trail landmarks during autonomous runs, with the tracked trail region
drawn in yellow. Landmark 1 was never attempted autonomously and thus no trail region is shown.
The images for landmarks 3–16 are all from day S5
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planning algorithms over the course of testing significantly improved performance.
To underline this, the four longest runs overall were in S4 and S5. The mean run
length for the first two days was 146 m, compared to 311 m for the last two, under
similar weather conditions.

On S4 the robot completed the loop in seven runs, with its two longest runs that
day accounting for 1.3 km or 76% of the loop. The first of S4’s seven runs went
from landmark 2 to landmark 6. The run ended when the robot’s right front tire
rubbed against a small trailside sapling on the way by, causing it to climb slightly
and drop suddenly, disconnecting the camera’s Firewire cable. The next run ended
quickly because a USB cable was still loose. Run 3 was ended manually as the robot
approached landmark 7, the trail junction (which it was able to successfully negotiate
in S5). Run 4 began past landmark 9 and ended at landmark 11 because the turn was
too sharp. Run 5 crossed the bridge but was manually terminated because the robot
was very close to the embankment on the right (landmark 13). Run 6 quickly missed
another sharp left turn, but run 7 took the robot to the end of the loop at landmark 16.

On S5 the robot completed the loop in four runs, with its two longest runs totalling
1.66 km or 98 % of the loop. Run 1 went from landmark 2 to landmark 3, where it
appeared to mistrack because the trail was obscured by tall grass. Run 2 began at
landmark 3, spanned most of the first field section, all of the mixed, and a difficult
early portion of the forest before its bumper clipped the sapling in the center-left
of the landmark 8 image in Fig. 8. Run 3 ended at landmark 9 because the robot
could not maneuver between the two tightly-spaced trees, but on run 4 the robot
made it across the bridge, past the embankment, and all the way to the finish line at
landmark 16.

By the last two days of testing the trail-tracking system was mature enough that
the types of failures observed were primarily ones of motion planning in technical
and tight situations, rather than of mistracking the trail. A recurrent problem, echoed
in landmarks 2, 6, 8, and 9, stems from a shortcoming in the robot’s reasoning about
obstacles in the two-level motion planner described in Sect. 2.3. The problem is that
when the planner falls down to the min hits level, it is basically assuming that the
obstacles it will be colliding with are all soft vegetation like grass and twigs. Seeking
a least-density path through such obstacles makes sense as a strategy to stay on the
trail, but the robot is unable to recognize that some obstacles like saplings and rocks,
which may be mixed in with the grass, are solid and must be avoided.

5 Conclusion

The trail-following system presented here has been successfully tested over a vari-
ety of challenging terrain types, a range of weather conditions and seasons, and
at different times of day from mid-morning to late afternoon. In its final form, no
parameter changes are necessary for the robot’s perceptual component to function
in these different situations, nor did the robot have any a priori model of the charac-
teristics of its area of operation. Based on previous work using very diverse image
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data sets [12, 25] and live runs in other locations [10], we believe that the system’s
perceptual capabilities would transfer quite well to other kinds of trails accessible to
wheeled vehicles. In order to increase the overall reliability of the system, however,
further improvements in the motion-planning component of the system are being
incorporated, including explicit detection of certain classes of obstacles.

Despite these strengths, the possibility of dynamic parameter or sensor changes
and exploitation of prior knowledge is attractive. For example, incorporation of trail
map information via GPS and visual odometry along GPS-denied trail sections could
be quite helpful (1) to let the robot know if it had strayed from the trail, or where the
nearest trail was if “lost”; and (2) to allow for intersection anticipation and higher-
level route planning over the trail network.

A scenario in which adapation would be desirable is nocturnal trail-following, as
neither the color nor stereo structure information derived from the omnidirectional
cameras would work in the dark without active lighting. As a dark-capable source
of dense structural information for traversability map computations, we have tested
a pair of non-overlapping Microsoft Kinect stereo depth cameras and found them
highly useful in shady patches and early morning/twilight.
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