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Abstract—We describe work toward a Kinect-based system
for tracking “trails” for autonomous outdoor robot navigation.
As the trail is often distinguishable from surrounding terrain
by its contrasting height or smoothness, the dense and precise
structural data provided by the Kinect is very informative about
the shape of the trail ahead, and we discuss height- and normal-
based approaches which work well over a variety of situations.
Furthermore, we show that depth sensing on the Kinect may
work outdoors when there is still enough light for the RGB
camera to capture the scene as well, allowing appearance-
based analysis of the point cloud to identify color contrast trail
edges. Our system’s ability to segment a wide range of trails is
demonstrated through video sequences collected from a mobile
robot platform and analyzed offline.

I. INTRODUCTION

Robustly inferring 3-D scene structure has always been a
core task for mobile robot navigation and obstacle avoidance,
whether through discrete object detection, occupancy grid
mapping, or hybrid techniques. The DARPA Grand Challenge
(DGC) robots of 2004 and 2005 used ladars almost exclusively
in a variety of geometric configurations to sense positive and
negative obstacles without regard for their semantic labels
[35, 37]. Recent advances in ladars such as the Velodyne have
afforded an even richer view of the world and these have been
used to great effect in the DARPA Urban Challenge of 2007
[24, 38, 16] and for the Google Car [14].

Stereo vision has also been popular for many reasons
including the amount of information obtainable relative to the
expense of the sensor. One successful DGC robot used stereo
to a considerable extent [7], and stereo was the primary sensor
for the DARPA LAGR program [1]. Color and texture infor-
mation can very informative about drivable regions [10, 36],
and appearance and structural cues used in concert often even
more so [25, 22, 12, 15, 5].

The Microsoft Kinect is a stereo camera which offers both
color and depth information (aka “RGBD”). The depth maps
produced by the Kinect are highly accurate over a wide
range of scenes because it generates scene texture for stereo
correspondence by active laser projection. The accuracy and
low price of the Kinect have made it a very compelling sensor.
However, a limitation of the Kinect is that sunlight interferes
with the pattern-projecting laser, so it is most suitable for
indoor robotics. Nonetheless, we will show that outdoor appli-
cations are possible when sunlight is sufficiently diminished:
at night, in twilight or early morning conditions, with cloudy
weather, or in strong shadow.

In this paper we present an approach to using the Kinect
for a mobile robot application we have been studying, trail-

Fig. 1. Robot at night with twin Kinects active

following. Trail is a semantic label for a portion of the scene
that is more specific than simply “drivable” or “obstacle-
free”. Such features can be navigationally useful to unmanned
ground or aerial vehicles in that they both “show the way” and
“smooth the way”. Finding and keeping to a path by driving
along it simplifies an autonomous robot’s perceptual and
motion planning tasks and mitigates hazards which occur in
general cross-country navigation. In this sense, trail-following
is analogous to the “lane keeping” task from autonomous road
following, involving repeated estimation, or tracking, of the
gross shape and appearance attributes of a previously-found
trail.

In our early work on trail-following we relied on appearance
[26, 27], a very strong cue for differentiating the trail from
the background on the basis of color or texture. However,
scene structure can also be highly informative, and we have
investigated it in more recent work [28, 29] using omnidi-
rectional stereo and a tilting ladar for point cloud acquisition.
Vegetation, rocks, trees, walls, ditches, slopes, and other terrain
features frequently delimit the trail and thus if protruding



obstacles, whatever their appearance, can be detected, the trail
can often be segmented.

For trail segmentation and tracking using only structure
information, height contrast is an obvious cue. Trails are
frequently at a different height than surrounding environmen-
tal features such as grass, other vegetation, or other terrain
features. However, the trail interior often has height variation
itself, and fitting a ground plane does not work well. Another
cue is structural texture. The distribution of normals on the
trail and off the trail may be used as a feature to differentiate
them. The simplest possible such feature is normal variance:
trails, being engineered, are generally smooth, while the sur-
roundings are bumpier.

A. Related work

Much previous work on the Kinect as a robot sensor can
be classified into SLAM-type algorithms which build 3-D
metric maps in indoor environments directly from colorized
point clouds [17]; and semantic labeling of objects which
may include floors, walls, and other navigationally-useful
categories [11, 3, 6].

Multi-Kinect rigs have been rare because of the laser
interference between adjacent cameras with overlapping fields
of view. This interference, which occurs when one Kinect sees
the laser pattern of another, is explained and characterized in
[32], which also presents a mechanical time division multiple
access approach to mitigating it. In [20] three vertically-
oriented Kinects with adjacent but not overlapping fields of
view were used to create a panoramic imaging system for
surveillance and person tracking.

Kinects have not generally been used in outdoor envi-
ronments because they do not work in direct sunlight. In
unpublished work a Kinect was mounted on a drill with a
board computer for outdoor image capture around dusk [13].
In [30] a Kinect was mounted on a bicycle and data was
collected as the bicyle was ridden on sidewalks and streets
“during the day but in illumination conditions that did not
affect the performance of the 3D camera”, planar patches were
fit to the data, and the normals were used to detect undrivable
features such as curbs, poles.

There is a considerable body of work on semantic labeling
of 3-D point clouds of outdoor scenes acquired from a laser
range-finder. A key paper in this area for mobile robots is [19],
which classifies points acquired by a terrestrial ladar as flat
surfaces (e.g. ground), linear structures such as thin branches
or wires, or scattered vegetation based on local characteristics.
Similar analysis is often performed on aerial ladar data taken
over urban and natural landscapes, where a common task is
to perform ground filtering to remove points associated with
vegetation and buildings [18, 2]. What is left are “bare earth”
points to which a model for the underlying terrain can be fit.
The converse problem, of identifying tree points explicitly,
was explored in [9]. Such work is relevant to ours because we
are also concerned with distinguishing the ground (i.e., the
drivable surface) from vegetation on it, and to discern a larger
structure (the trail) in the midst of much clutter.

Fig. 2. Close-up of dual Kinect arrangement

II. METHODS AND PRELIMINARY RESULTS

The robot used for the experiments in this paper is pictured
in Fig. 1. It is a Segway RMP 400 with four-wheel differential
steering.

A. Depth image capture

Two Kinect cameras were mounted on the robot approxi-
mately 1.2 m off the ground, each yawed about 30 degrees
out from straight ahead, and tilted down about 45 degrees
below horizontal. A close-up is shown in Fig. 2, and the RGB
images from each camera for a sample trail scene taken about
25 minutes before sunset are shown in Fig. 3(a). A portion
of each Kinect is visible in the other’s RGB camera field of
view as a thin black triangle, but the depth camera views (e.g.,
Fig. 3(b)) were not occluded. Black pixels in the depth images
represent areas where the depth could not be estimated because
of half-occlusion or sunlight interference (this sequence was
taken in the early evening close to sunset). With intrinsic and
extrinsic calibration parameters of the RGB and depth cameras
we can obtain a “colorized” point cloud for the combined rig
as shown from an overhead perspective in Fig. 3(c).1

The Kinect’s field of view is about 57 degrees horizontally
by 43 degrees vertically [8], so at least two were deemed
necessary to give the robot a sufficient horizontal field of view
to not lose sight of the trail at sharp turns. The yaw angles were
chosen to make the depth cameras’ fields of view adjacent for a
panoramic effect while minimizing laser interference between
the two cameras as discussed above [32]. This interference
manifests itself as noise and missing data in the computed
depth images (e.g., the black pixels near the vertical edge
between the two images in Fig. 3(b)). Inpainting in the depth
image to interpolate missing data is possible [34], but the depth
noise is still unsuitable for precise estimates of the normal over
small neighborhoods.

1The data collected for this work was obtained while the robot was under
manual control. It consisted of RGB and depth images from each Kinect,
captured on a Lenovo W520 laptop with an Intel Core i7-2720QM CPU
and 8 Gb of RAM at about 10 Hz and 640 × 480 resolution using the
libfreenect library [23] and downsampled to 320× 240 before writing
to disk. The depth images were further downsampled to 160× 120 for point
cloud processing; all further analysis was performed offline.
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Fig. 3. Sample trail scene, evening. (a) RGB images from left-, right-facing
Kinects; (b) Corresponding depth images in false color, with “hotter” colors
closer; (c) Overhead perspective view of combined point cloud with RGB
values of pixels registered to their 3-D locations

B. Trail state

As described in [27], the trail region R immediately in front
of the robot can be approximated as a constant-width w arc of
a circle with curvature κ over a fixed arc range [dmin, dmax].
The position of the robot with respect to the trail is given by
its lateral offset ∆x from the trail centerline and the difference
θ between its heading angle and the tangent to the trail arc.
Concatenating the intrinsic width and curvature shape vari-
ables with the extrinsic offset and heading error variables, the
current trail state X is the 4-parameter vector (w, κ,∆x, θ).
Under the assumption that a unique trail is present in each
image, we search for it in a top-down, maximum likelihood
fashion: multiple candidate regions are hypothesized scored
using a trail likelihood function L, with the highest-scoring
region chosen as the winner.

Because trail-following entails tracking the trail region over
an image sequence, we use particle filtering [4] to incorporate
a prior p(Xt|Xt−1) on the hypotheses which keeps them

(a)

(b)

Fig. 4. k-means color labels for sample scene in (a) Original images and
(b) Transformed to vehicle-coordinate map with trail estimate overlaid. The
mode label for each grid square is shown (k = 8).

near the predicted location of the trail in the current frame
as derived from the robot’s dynamics. To limit the size of the
search space, absolute limits are also set on w and κ based on
any knowledge of the trail properties, as well as on ∆x and
θ assuming that the robot is on or close to the trail.

C. Color trail detection

In [27, 26] we developed a technique adapted from [5]
for computing the color appearance likelihood of a candidate
region Lappear(R) in a single image based primarily on the
assumption that the trail region has a strong color and/or
intensity contrast with left and right neighboring regions RL

and RR. To apply this method to the two-camera rig here,
we compute a small set of exemplar colors for both Kinect
RGB images jointly (after post-processing to try to match
their separate exposures) using k-means clustering in CIE-
Lab space and assign every pixel one of these k labels. This
labeling is illustrated for the sample scene in Fig. 4(a).

The distribution of colors within a given candidate region
is characterized by histogramming the labels within it, and
thus the contrast between that region and its neighbors can
be quantified by the χ2 distance measure or similar. Another
distinguishing characteristic of trails is that their color distribu-
tion is often more homogeneous than the surroundings, and this
is quantified with the entropy of the region’s exemplar color
histogram. The full likelihood of a particular candidate region
is then obtained as a weighted combination of the contrast and
homogeneity factors.
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Fig. 5. Trail detection when insufficient depth information is available.
(a) Brightly-lit scene; (b) Corresponding depth image, which is missing vast
majority of values; (c) Planar projection of RGB values; (d) Corresponding
k-means label vehicle-coordinate map and estimated trail region.

In [27] these contrast measures were computed on the om-
nidirectional image pixels after projecting a candidate region
from vehicle coordinates. Here, we are able to accurately
“unproject” RGB pixels to vehicle space because we have their
true 3-D locations from the Kinect’s depth-to-RGB-camera

calibration. We rasterize the point cloud by collecting k-means
labels in a grid-style map in vehicle coordinates where each
grid square is 0.1 m on a side. A sample such map is shown in
Fig. 4(b), with the maximum likelihood trail region estimate
overlaid.

As sunlight conditions brighten, however, the amount of
usable depth information returned by the Kinect diminishes.
A morning scene which was captured about 3 hours after
sunrise on a cloudy day demonstrates this issue in Fig. 5(a).
The corresponding depth image is given in Fig. 5(b): depths
are available for only a fraction of the image. While the depth
information is vital for pure obstacle avoidance, one of the
key motivations for trail segmentation is that it represents
a form of visual “non-obstacle” detection. Depth values are
necessary to accurately project the entire color point cloud into
the vehicle-coordinate map, but by assuming that all pixels lie
on the ground plane (which is not unreasonable for the trail
region) we can simply intersect pixel rays with the ground
plane to obtain approximate 3-D locations. Such a ground-
plane projection and its associated map are shown in Fig. 5(c)
and (d), respectively.

D. Trail detection from height and normal contrast

Here we seek to adapt the color approach above to im-
plement our intuition, outlined in the introduction, that struc-
tural height and/or roughness contrast derived from the depth
images can also be used to discriminate the trail. The major
purpose of a depth-based formulation is to enable trail segmen-
tation when color-based discrimination may fail. One obvious
reason is when there is too little illumination as twilight turns
to night, or in deep shadow. A second reason is when the
appearance characteristics of the trail and the neighboring
terrain are very similar, as when fallen leaves in the forest
cover everything, or if on snow or dirt where the trail is only
distinguished by ruts or footprints.

An attractive idea is to try to find obstacles first and infer
the trail region as the remaining drivable area. If the ground
is perfectly flat, we can do a robust planar fit and simply
threshold on point-to-plane distance to get obstacles. However,
this is a problem for several reasons. First, the ground may
contain several planes, as with a sidewalk and adjacent street,
and it is not guaranteed that the trail plane is the “dominant”
one that would be recovered using a RANSAC-like process.
An analogous situation occurs in many of our testing areas
where the trail is a kind of narrow trough in the midst of
plentiful grass or ground cover–in such a case the plane would
be fit to the grass and the trail point heights would all be
negative outliers. A second reason why fitting a single plane
often does not work is that the terrain may have considerable
slope changes and undulations which make that single plane
a poor description of the ground height for most of the scene.

Our approach is to simplify the method of [21], which
fits planes to robot-sized chunks of a stereo-derived point
cloud and combines them into a traversability map comprising
several hazard-related factors. Full repeated plane-fitting is
expensive, so we approximate it by computing the median
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Fig. 6. (a) Another view of combined point cloud for Fig. 3 but with colors now representing height relative to nominal ground plane Y = 0: yellow higher,
green on ground, blue below ground; (b) Same scene and viewpoint, but with color representing estimated normal direction (red channel = X component,
green = Y , blue = Z); (c) Height traversability map and (d) Normal variance traversability map for same scene.

absolute deviation (MAD) of the Kinect depth-derived height
map over robot-sized bins. Higher values of the height MAD
tend to correlate with bumpy or non-level spots, which are
not desirable trail characteristics. If µMAD is the mean MAD
value or “badness” within a hypothesized trail region R, then
the height likelihood Lheight(R) is a weighted sum of the
badnesses of the neighboring regions (which we want to be
high) minus that of the central region (which we want to
be low). A sample “height traversability map” is shown in
Fig. 6(c). Note how it picks up on the vegetation growing
alongside the trail. Besides step edges, this MAD formulation
also is sensitive to substantial slopes.

A major hypothesis of this work is that height contrast is
not always sufficient to discriminate the trail. As can be seen
in the sample scene in Fig. 3, although there is tall vegetation
and a fence near the trail, between those objects and the
actual trail are strips of much shorter grass-like ground cover.
The height contrast between this area and the trail region is
minimal, but the trail’s smoothness is a distinguishing feature
here. We quantify smoothness by measuring local deviation of
the surface normal from the expected upright direction.

Specifically, a normal vector was computed for each 3-

D point using the Point Cloud Library (PCL) [31] with k-
nearest neighborhoods (k = 25 unless otherwise noted). This
neighborhood definition seemed to produce better results with
the spatially-varying density of the points in the point cloud
caused by foreshortening over the entire scene than an r-radius
neighborhood. The Y (i.e., vertical) component of each point’s
normal vector was binned in a normal variance traversability
map, and as above the maximum absolute deviation (MAD)
was computed for each bin to obtain a measure of local rough-
ness. For this formulation the normal likelihood Lnormal(R)
was analogously the mean normal Y MAD over the left
and right neighbor regions (which we expect to be high–i.e.,
rougher) minus the MAD of the central hypothesized region
(thus penalizing for roughness in the nominal trail region). A
sample normal variance map is shown in Fig. 6(d). Note how
much tighter it is on the trail.

More results for each method are shown in Fig. 7. Fig. 7(a)
is of a wooden bridge trail section with poor color contrast,
and Fig. 7(c) was taken about 10 minutes before sunset in the
forest, near the limit of the Kinect RGB camera’s low-light
capabilities. The trail height contrast is not large in this section,
but the normal traversability map picks up the smooth section



well. A comparison of the three methods is shown in Fig. 8
for a sharp turn around a tree. While every method tracks the
trail successfully here, there is less ambiguity in the normal
traversability map of Fig. 8(c). Both the height and color
maps show a false “fork”: an apparent trail region straight
ahead that is both brown and low compared to the surrounding
vegetation. The normal traversability map rejects this region
more decisively because of its comparative bumpiness.

III. CONCLUSION

We have presented several promising components of a
Kinect-based system for appearance- and structure-based trail-
following. It is evident that the depth and color capabilities of
the Kinect are roughly complementary outdoors: the darker
the scene, the better depth recovery works, but the dimmer
the color image. Conversely, brighter scenes generally yield
better-exposed color images, but quickly wash out the depth
sensor. Accordingly, we continue to work on automatically
switching between or weighting the structural and appearance
cues in order to track the trail through all kinds of illumination
conditions. Thresholds on the number of “good” depth pixels
in an image vs. the number of well-exposed (neither under- nor
over-saturated) RGB pixels may be used as absolute bounds,
but there is still a light range in between where the relative
efficacy of these cues must be estimated in a scene-dependent
fashion.

Besides trails, we are currently looking at methods for
Kinect-based detection of other semantically-meaningful out-
door objects such as trees, posts/poles, and large rocks. These
are of interest because the robot may want to study them
further for scientific or other applications, but most pressingly
because they are obstacle types which are quite dangerous vs.,
say, tall grass. Distinguishing hard from “soft” obstacles, both
of which present as large structures to ladar and stereo sensors,
has traditionally been a difficult issue [33].
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Fig. 8. Comparative trail detection results. (a) RGB images and depth images;
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Using color cluster likelihood
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