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Abstract—We present preliminary work on analyzing 3-D
point clouds of a small utility vehicle for purposes of humanoid
robot driving. The scope of this work is limited to a subset of
ingress-related tasks including stepping up into the vehicle and
grasping the steering wheel. First, we describe how partial point
clouds are acquired from different perspectives using sensors
including a stereo camera and a tilting laser range-finder. For
finer detail and a larger model than one sensor view alone can
capture, a Kinect Fusion [1]-like algorithm is used to integrate
the stereo point clouds as the sensor head is moved around the
vehicle. Second, we discuss how individual sensor views can be
registered to the overall vehicle model to provide context, and
present methods to estimate several geometric parameters critical
to motion planning: (1) the floor height and boundaries defined
by the seat and the dashboard, and (2) the steering wheel pose
and dimensions. Results are compared using the different sensors,
and the usefulness of the estimated quantities for motion planning
is also demonstrated.

I. INTRODUCTION

As part of the recently-commenced DARPA Robotics Chal-
lenge (DRC) [2], contestant robots are challenged to approach
a car-like vehicle and enter it, drive it to a target location in a
disaster zone too dangerous for a human to enter, and get out
before approaching a building. We name these stages ingress,
driving, and egress, respectively. The morphology of the robot
is not mandated, but we plan to use a humanoid (shown in
Fig. 1; details in Section II). Furthermore, the vehicle to be
driven is unknown but expected to be broadly similar to the
ones in Figs. 1 and 5.

There are potentially an enormous number of perception,
motion planning, and control problems to address in order for
a robot to successfully complete this very practical challenge
on a wide range of vehicles and roads. In this paper, we focus
on only a handful of key perception tasks necessary during the
ingress stage, with reference to the associated motion planning
tasks that such scene understanding enables. The driving task is
of course nontrivial, but our approach is algorithmically similar
to previous work stemming from the various DARPA Grand
Challenges from 2004-2007 [3], [4] and out of the scope of
this work. Also, although egress is quite similar to ingress,
the issues are more of motion planning and control rather
than perception since vehicle parameters have already been
estimated, so we will not examine it here.

We break the ingress perceptual task into several phases.

Fig. 1. (Left) Hubo robot stepping onto test utility vehicle; (right) Simulation
of stepping motion

Assuming the robot’s initial pose is close to the vehicle and
pointed toward it (so that search is not necessary), the first goal
is to differentiate the driver’s side and passenger side, and to
find and parametrize a target area on the floor of the vehicle
that the robot will be stepping up to. The height and lateral
boundaries of this area are critical parameters for the motion
planner. The second step of the ingress task is to parametrize
the location and dimensions of the seat such that the robot can
plan to safely lower itself down into a sitting position. If the
robot has entered on the passenger side, it must then “scoot”
laterally, possibly using its hands, to get into a driving position.

The last phase of ingress is something we term interfacing.
During this phase control surfaces of interest such as the
vehicle on/off switch, steering wheel, accelerator/brake pedals,
and the gear shifter (for reversing) must all be located and
parametrized. Furthermore, the robot must carry out a set of
calibrations before the vehicle begins moving such as checking
the reachability of these control surfaces, grasping/touching
them, inferring or refining expected affordances, measuring
force resistance, etc.

The main topic of this paper is a set of techniques for
analyzing the 3-D structure of a vehicle in order to identify
parts which are functionally important for ingress such as the
floor, seat, dashboard, steering wheel, and pedals. With these
areas labeled and parametrized, the robot has the information
it needs to plan collision-free motions for stepping, sitting,



scooting, grasping, and so on. However, for this paper the bulk
of our attention is limited to two of these functional categories:
the floor and the steering wheel.

As an important simplifying constraint, we currently as-
sume that the utility vehicle has no roof or doors. The first of
these would not significantly change the perceptual approaches
presented here, but it would complicate motion planning by
introducing the issue of head and shoulder clearance. Doors
make floor estimation harder by partially obstructing the view
of the vehicle interior, as well as requiring additional sensing
and planning for grasping and opening.

In order to obtain 3-D information, we compare the efficacy
of two different depth-sensing devices for these tasks: a Kinect-
like stereo camera and a tilting laser range-finder. As discussed
in Section II, these sensors have quite different strengths and
price points. They both provide appearance information (either
intensity or color) in addition to depth, but our emphasis here
is completely on structural analysis.

A. Related Work

Closely related work includes efforts to get bipedal robots
to step up or climb stairs. The Nao robot climbs a spiral
staircase in [5] after stopping to acquire a point cloud with
a short-range tilting Hokuyo and segmenting individual tread
rectangles. The authors mention [6], [7] as key prior work on
using RANSAC-like techniques to perceive a single step. The
Honda Asimo robot sees isolated planar steps with a tilt ladar,
stepping around or onto them in [8], [9]. There is also analysis
of point clouds for stair perception in [10].

Several groups have been interested in 3-D object recogni-
tion more generally. [11] uses visual appearance, local shape
and geometry, and geometric context features to label colored
point clouds of indoor office and home scenes with a large
number of classes such as wall, floor, keyboard, tabletop,
chairback, monitor, book, and so on. [12] looks for objects
such as cups, bowls, cereal boxes, etc. in point clouds with
color information using an RGB-D variant of HOG detectors
after first training on 3-D models. Similarly, much work has
been done with the PR2 robot in terms of looking at tabletops
and segmenting and identifying objects with its ladar and/or
stereo cameras [13], including plane fitting and region growing
for segmentation in a kitchen environment [14]. Also relevant
is the work in [15] on door handle detection using a tilting
Hokuyo after first finding doors using depth and reflectance
information.

II. EQUIPMENT & POINT CLOUD CAPTURE

As shown in Fig. 1, for this preliminary work we study
a single full-scale golf cart with no roof or windshield. To
obtain the pose of the robot or sensors during testing and data
capture sessions, we have an optical motion capture system
from OptiTrack which uses passive reflective markers.

Our robot is a humanoid called Hubo 2+ [16] which is 130
cm tall and has a mass of 42 Kg. It has 38 total degrees of
freedom (DoF): 6 DoF in each limb, 3 DoF in the neck, 1 DoF
at the waist, and 5 DoF per hand. Normal walking speed is
0.5 m/s, with a maximum of 1.0 m/s.

Fig. 2. Prototype sensor head with Asus Xtion Pro Live and tilting
Hokuyo UTM-30LX-EW. Stereo color cameras, a PMD CamBoard nano, and
a Microstrain IMU are also included but not used here.

The head shown in Fig. 1 does not contain any useful
sensors for our task, so we have designed a prototype head,
shown in Fig. 2. The head had motion capture markers affixed
for all data collection, and it integrates the following two key
sensors (along with several others not used in this work):

• Asus Xtion Pro Live RGB-D camera (a compact,
low-power equivalent of a Microsoft Kinect) which
captures RGB and depth images at 640× 480 resolu-
tion with a field of view (FOV) of about 60◦ × 40◦.
The Asus has a maximum depth range of about 4 m
and a minimum range of about 0.75 m, but it does not
work in full sunlight.

• Tiltable Hokuyo UTM-30LX-EW laser range-
finder which scans at 40 Hz over a 270◦ FOV at an
angular resolution of 0.25◦. The minimum detectable
depth is 0.1 m and the maximum is 30 m, and
intensity-like reflectance information is provided for
each point. The Hokuyo is mounted on a tilting servo
which affords an unoccluded view from a minimum
of −90◦ (pointing straight down) to +60◦.

Obtaining 3-D point clouds from the Asus is straightfor-
ward, as it furnishes depth images directly and is factory-
calibrated with functions to obtain full X,Y, Z values for
each pixel (through OpenNI). The Hokuyo ladar is tilting
continuously in a sinusoidal pattern over a range of [−45◦, 45◦]
(relative to the sensor head pose) at a maximum speed of 10◦

/ s. Each point cloud is assembled from the transformed laser
scans over approximately one full sweep. To limit extraneous
data for this task we retain only the front 180◦ of the FOV
and remove all points beyond 4 m.

As an additional source of information, we use the KinFu
module in the Point Clouds Library (PCL) [17], an open-
source version of the original Kinect Fusion algorithm [1].
KinFu stitches together multiple views from the Asus and
creates a smoother surface model of the vehicle through depth
super-resolution than one frame alone contains. KinFu uses
iterative closest point (ICP) on the 3-D point clouds captured



Fig. 3. Point cloud of golf cart scene captured from Asus depth camera with
KinFu.

at successive sensor poses to estimate the camera motion and
put all of the sequence’s points into a common frame. ICP can
fail when the scene does not have sufficient 3-D structure, as
with large planar surfaces [18], but for the vehicle scanning
we do it works quite well.

The point cloud obtained from KinFu for a handheld
minute-long scan around the vehicle, voxelized at a resolution
of 0.025 m and colored by height in ROS rviz [19], is shown
in Fig. 3. In future work this point cloud will be gathered from
the robot as it walks toward and around the vehicle.

All computations except the KinFu capture were done on
an Intel i7-3720QM 2.6 GHz laptop with 16 Gb of RAM.

III. VIEW ALIGNMENT

Throughout this paper we use the ROS [19] convention for
coordinates of +X pointing forward, +Y to the left, and +Z
up.

A. Obtaining Vehicle Coordinates

As can be seen in Fig. 3, the KinFu-captured scene cloud
includes points from the ground and other objects. Before
further processing, we want to detect which points belong to
the vehicle in order to filter out distracting background features
and obtain the vehicle dimensions. As a first step, the ground
plane is found and parametrized by a robust plane fit using
RANSAC [17], the entire point cloud is rectified to put the
ground plane at Z = 0, and ground plane points are removed
by thresholding z ≤ 0.05 m. A heightmap Hscene is then
generated over a bounding box around the remaining KinFu
scene points at a resolution of 0.01 m. Hscene is shown in
Fig. 4(a) with red representing cells with no data and intensity
proportional to z, up to a maximum of 1 m.

We formulate the vehicle detection problem as finding the
position, orientation, and dimensions of a vehicle-sized rect-
angle Rveh = (xveh, yveh, θveh, lveh, wveh) in Hscene. With
appropriate bounds on lveh and wveh and a rough expectation
of the average vehicle height, this is a well-posed problem if
there is exactly one vehicle in the scene. For this work we
learn bounds from published specifications of a representative

(a) (b)

Fig. 4. (a) 0.01 m resolution heightmap Hscene of KinFu-derived point
cloud from Fig. 3 after rectification and ground removal. Red pixels are “no
data” cells and intensity saturates at 1 m. (b) Estimated vehicle heightmap
Hveh

Fig. 5. Sample utility vehicles (Cushman Hauler and Kawasaki Mule) from
set used to learn vehicle dimensions. Note the different heights and widths of
the floor step areas and locations and angles of the steering wheels.

sample of 7 similar utility vehicles.1 Minimum and maximum
values of the vehicle length, width, and aspect ratio were
computed over this set, and these were scaled down and up by
90% and 110%, respectively, to get absolute bounds.

The likelihood Pveh(R) of a particular hypothetical rect-
angle R = (x, y, θ, l, w) is measured via height contrast:
intuitively, we are looking for a rectangle-shaped region filled
with obstacle points surrounded by some amount of free
space in Hscene. We quantify this by counting the number
of occupied cells Oin and free cells Fin inside R, the number
of occupied cells Oframe in a rectangular frame around R,
and compute the contrast Pveh(R) = Oin−w(Fin +Oframe).
For the results here w = 0.5 and the frame width is 0.2 m.
Note that there is no distinction made between the front end
and the rear end of the vehicle. This ambiguity is resolved at
the part detection stage in Section IV.

To find the maximum likelihood, we run a particle filter
[20] with 200 particles, starting with a uniform prior distri-
bution on the state variables within the learned dimensional
bounds and the positional bounds of Hscene (θ is completely
unknown). The state after 250 iterations is taken as the best
vehicle rectangle R̂veh. If a randomly-generated hypothesis
violates the dimensional bounds given above, rather than
assigning it a zero likelihood we simply resample it from the
prior distribution.

The heightmap resulting from the vehicle estimate, which
takes a few seconds to obtain, is shown in Fig. 4(b). The
camera path did not get full coverage on the passenger side, so

1Kawasaki Mule 4000, Cushman Hauler 800 electric, Polaris Ranger EV,
Deere R-Gator, Deere HPX 4x4, Honda Big Red, and Bobcat 4200 4x2
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Fig. 6. Right stereo camera images from static capture locations described
in text

the point cloud is ragged there, resulting in a slightly wrong
width estimate. θ is also slightly off, most likely due to the
low resolution of the heightmap. There are several ways to
improve both of these issues with additional processing, but
these results are sufficient for the other perceptual tasks that
need them.

B. Registration of Individual Views

Part detection can operate on the full vehicle heightmap
Hveh in Fig. 4(b), and we show results for doing so in
Section IV. However, we are also interested in detecting parts
in the sensor point clouds obtained at individual poses as the
robot moves. With a sensor’s limited FOV and intra-vehicle
occlusions, parts such as the floor or steering wheel might be
completely out of view or only partially visible.

To illustrate this, data on the test vehicle was captured
from four static positions with the sensor head on a tripod,
all at about the head height of the Hubo. Views from the
right stereo camera are shown for these positions in Fig. 6. In
PassengerMid (PM) the vehicle floor is in view but the
steering wheel is out of frame. In PassengerRear (PR)
the floor is mostly visible and the steering wheel is partially
visible. In DriverSteering (DS) the steering wheel is
prominently in view but the floor is partially blocked by the
seat. Finally, in PassengerSteering (PS) the steering
wheel is in view but the floor is almost completely occluded.

Each sensor point cloud is rectified and ground plane points
removed as described above for the KinFu data. The procedure
is somewhat different because there may be little or no ground
visible in close-up views of the vehicle. Thus, as a first step the
point cloud is roughly rectified using the height of the sensor
head and its tilt angle with respect to the ground as reported
by the lab’s motion capture system described in Section II.2
Rough ground points (|z| ≤ 0.1 m) are then selected; if there

2In the field, the tilt angle would be supplied by the IMU and the height
of the sensor head would be derived from the robot kinematics

Asus Hokuyo

Fig. 7. Cropped views of point clouds obtained from DS pose in Fig. 6 after
rectification

are none, this is the final ground plane. Otherwise, RANSAC
robust plane-fitting with an inlier threshold distance of 0.01 m
followed by least squares refinement is applied to the rough
ground points to obtain the final ground plane. This plane is
used to rectify the original sensor point cloud and remove
ground points with a threshold of 0.05 m. Assuming that the
sensor is near the vehicle and pointed at it, we also remove all
points more than 2 m away. The rectified point clouds at pose
DS from the Asus and Hokuyo before ground point removal
and distance filtering are shown in Fig. 7.

Even after rectification and filtering, interpreting these
sensor point clouds can be difficult because they only show
a portion of the vehicle, and which portion is unknown. We
remove this uncertainty by attempting to register each sensor
point cloud to the full KinFu vehicle point cloud. Because
both clouds are rectified, it is only necessary to find a 2-D
translation and rotation T = (∆x,∆y,∆θ). Rather than work
with the point clouds, it is efficient to convert the sensor cloud
for sensor s to a heightmap Hs. Sample sensor heightmaps
for the Asus and Hokuyo at pose DS derived from the point
clouds in Fig. 7 are shown in Fig. 8. Note that these are
different sizes because the sensors’ different FOVs result in
different bounding boxes. Their scales are the same, as are
their orientations.

Given the non-vehicle points which may be present in
Hs, finding the T̂ which makes it best agree with Hveh

is essentially a robust image template-matching problem. A
standard approach would be to compute features such as SIFT,
SURF, etc. in each heightmap “image”, match them, and
estimate T from the matches in a RANSAC-like framework,
but this is complicated here by the small size of the images and
the “no data” cells/pixels. For this preliminary work we found
that a simple, successful approach is to formulate a pixelwise
objective function f(T,Hs,Hveh) which measures the degree
of match between Hveh and HT

s , the sensor heightmap after
transformation by T, and set T̂ = argmaxTf(·). To evaluate
f(), we iterate over all pairs of corresponding heightmap cells
(hveh, h

T
s ) in the overlapping portion of Hveh and HT

s and
count the number of matches. A pair is considered a match if
(a) there is height data for both heightmap cells (i.e., neither
one is red) and (b) their heights are relatively close–we use
|hveh − hTs | ≤ 0.1 m.

To optimize f(), we do an exhaustive search at a quarter of
the original heightmap resolution at 1 pixel translational and 1◦

angular increments to find an approximate solution T̂1/4, then



Asus Hokuyo

Fig. 8. Sensor heightmaps of point clouds obtained from DS pose in Fig. 6
after rectification and ground removal

Asus
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Fig. 9. Registered and trimmed heightmaps of individual sensors

search again at half-resolution within a tighter angular range of
∆θ̂1/4±5◦ at 0.5◦ increments for a better solution T̂1/2. This
process takes about 1 minute to compute. The full sensor cloud
is then transformed with T̂1/2 and ICP is performed between
it and the KinFu vehicle cloud to get a final T̂. The registered
sensor heightmaps found for each of the four example views
(after trimming points outside the vehicle bounds), which we
will term HDS

s , HPS
s , HPR

s , and HPM
s , are shown in Fig. 9.

IV. VEHICLE PART DETECTION

With a sensor view registered to the vehicle and non-
vehicle points trimmed away, the search for any parts of
interest to the motion planner is considerably constrained. We
detail these constraints and the individual part detectors below.

A. Floor

Intuitively, the floor is expected to be a planar rectangular
region parallel to the ground plane. Unfortunately, we cannot
simply use RANSAC to find the strongest horizontal plane in
a particular registered sensor heightmap HT

s because of the
potential for confusion with the seat or hood planes, as can
be seen from Fig. 9. However, we have prior knowledge that
the floor plane must be at a steppable height. Assuming that
this is a roughly constant offset above the vehicle’s ground
clearance, we once again use specifications from the set of
exemplar vehicles introduced in Section III-A to obtain min-
imum and maximum bounds on the floor height (in this case
zfloor ∈ [0.15, 0.40] m). Excluding points in the registered
sensor point cloud outside of this range yields a nominal floor

FDSasus FPSasus FPRasus FPMasus

FDS
hok

FPRhok FPMhok Fveh

Fig. 10. Inliers after horizontal plane fitting on floor height slice in green,
outliers (all other vehicle points) in red, and fitted rectangles outlined in blue.
“No data” points are white here, and inliers overwrite outliers for display
(which is why the steering wheel is oddly cropped in FDSasus)

slice upon which we then run a RANSAC horizontal plane fit
(i.e., the normal must be within 5◦ of vertical). This finds the
floor plane in seven of the eight H∗

s in Fig. 9 as well as Hveh

in Fig. 4(b) (not enough inliers were found in HPS
hok).

Fig. 10 shows the floor plane inliers for each sensor
and view F∗

s in green and outlier points from the vehicle
in red. Isolating the cluster of inliers belonging to the floor
region itself can be formulated as a rectangle finding problem
similar to the vehicle detection task in Section III-A. However,
whereas that problem has a 5-D search space, this one is more
constrained. We assume that the floor rectangle’s axes are
aligned with those of the vehicle, its width is approximately
the same as the vehicle, and its center is on the vehicle
centerline. This leaves only 2 free variables to determine
Rfloor: (xfloor, lfloor), the floor’s forward/backward position
and dimension (i.e., the distance between the seat and the
dashboard). We put reasonable bounds on these variables
and again run a particle filter with the likelihood function
Pfloor(R) = (Nin − Nout)/A, where Nin is the number of
floor plane inliers in R, Nout is the number of outliers in the
rectangle, and A is its area.

The search is very fast to converge and only 10 iterations
are needed. The blue lines in Fig. 10 indicate the estimated
floor rectangles. These are accurate when the whole floor
region is visible, and conservative when it is not. Impingements
like the pedals, drink holders, and steering wheel are detectable
as outlier points present inside the floor rectangle, and this
information can be passed on to the motion planner. Some
error is due to rotational inaccuracy in the registered sensor
heightmaps.

B. Steering Wheel

For purposes of pattern recognition, the steering wheel is
essentially a circle on an inclined plane. From automotive stan-
dards there are fairly tight bounds on the possible radius r, and
we expect that it will be tilted in the range of φ ∈ [20◦, 70◦],
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Fig. 11. Fitted steering wheel rectangles outlined in blue on steering wheel
height slice (“no data” points are red here)

where 0◦ would be parallel to the ground plane. As before,
we can limit the search for it to a reasonable range of heights
to filter out some vehicle points, and its x, y position within
the vehicle is somewhat constrained (even not knowing front
from back or whether it is a right- or left-hand drive vehicle).

Our approach here is to interpret a particular steering wheel
pose and size hypothesis in terms of an axis-aligned (in vehicle
coordinates) bounding rectangle Rsw in a registered sensor
heightmap H∗

s . This rectangle’s center is defined by xsw, ysw,
its width is just 2rsw, and its length is 2rsw cosφ. Within a
hypothetical bounding rectangle we expect to see an ellipse of
points whose heights contrast with those of nearby points just
outside the ellipse (i.e., floor and/or seat points). We quantify
this by sampling the ellipse at N discrete points and counting
how many pairs of inside/outside points Nin have a height
difference of ≥ 0.05 m or the outside point has no data vs.
how many Nout are about the same height. The likelihood of
the associated rectangle is then Psw(R) = (Nin −Nout)/N .

A particle filter is again used to search for 200 iterations
over different rectangles to optimize Psw. If the likelihood of
the best rectangle found is less than 0.5, we say that no steering
wheel has been found. With this criterion, all of the detections
are shown in Fig. 11. The estimated diameters range from
0.353 to 0.357 m; the hand-measured diameter of the golf cart
steering wheel is 0.346, a 1 cm difference.

V. CONCLUSION

We have presented several techniques for detecting and
estimating parameters of utility vehicle parts as prerequisites
for for humanoid robot ingress. More polishing could be done
to improve the accuracy of the estimates, but the basic methods
are robust for both sensors tested. In future work we will
include other part types such as the seat and the pedals, and
refine our knowledge of the steering wheel’s spoke locations
and tube diameter so that it can actually be gripped. Thus far
the detectors presented are “first-order”, in that they do not
depend on or otherwise exploit one another’s output. We are
currently examining how the knowledge of where the floor is
may help steering wheel detection and vice versa, as well as
all of the other categories under consideration.

Demonstrating generality is very important, and we plan
to use KinFu to collect models of a number of other utility
vehicles to test and refine these techniques. We are also
working on integrating the sensor head with Hubo and getting
these methods to run in real-time. Incremental registration of
the sensor head to the KinFu point cloud as it is built should be
much more efficient than the approach given in Section III-B.
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