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ABSTRACT

In this dissertation, I focus on algorithms to detect, refine, and track com-

plex visual objects, as determined by their shape, appearance, or range of motion.

Two different classes of representations, namely low-dimensional and point-wise (non-

parametric), are explored, compared, and analyzed by combining multiple features

from both imaging and depth sensors. Such perception modules may provide crucial

decision-making and planning information for intelligent systems, and we show links

to several robotic application areas.

On one side, a multimodal human detection algorithm which utilizes multiple

sensor data sources is detailed. The human is represented in a low-dimensional space,

and a ladar-camera architecture is constructed which with visual and geometric cues

improves on the detection rate and speed of conventional human classifiers. Unlike

existing approaches, the proposed human classifier does not make any restrictive as-

sumptions on the range scan positions, and thus is applicable to a wide range of real-life

detection tasks.

On another side, a modified graph cut-based method is proposed to refine com-

plex objects–e.g. human hands, hiking trails for navigation, and household objects–

from a rough estimate of the object pose given by a low-dimensional shape detector or

tracker. The standard graph cut method is modified to incorporate color and shape dis-

tance terms, adaptively weighting them at run time to favor the most informative cue

in different visual conditions. Also, this method is extended for point-wise tracking of

the objects through iterative refinement without estimation of the object displacement

over time.

Moreover, a novel algorithm which combines low- and high-level observations

in a graph cut framework is developed for the purpose of refining low-dimensional

xix



representations of the human shape provided by some human detection or tracking

methods. A multi-layer graph cut framework is introduced to combine low-level obser-

vations such as color and depth with high-level cues including the estimated ground

plane and point-wise shape confidence scores given by a classifier.

Lastly, a point-wise tracking algorithm which fuses multiple cues obtained from

depth and color cameras is developed. It employs a motion estimation technique in

which displacements are calculated from the 3-D locations of image keypoints matched

between frames. Color and point-wise shape cues are combined in the same feature

vector to allow adaptive weighting in different parts of the scene. This tracker is

generic in that it does not make any assumptions or restrictions about the shape of

the object, and experiments demonstrate better dense point-wise tracking performance

than comparable algorithms over large viewpoint changes and object deformations.
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Chapter 1

INTRODUCTION

In this thesis, we focus on the perception algorithms to detect, refine, and track

the complex objects using two different representations, namely low dimensional and

point-wise (non-parametric), by combining multiple features from a single or multiple

sensors. The differences between two groups of algorithms which represent the complex

objects in low dimensional space and point-wise are explored, compared and analyzed.

This chapter first makes an introduction to the complex object perception, and defines

the object Refinement concept. Second section explains low dimensional and point-wise

object representations, their advantages and disadvantages. Then, the importance of

incorporating multiple features in the perception systems is outlined in the next section.

Finally, it describes the thesis statement, contributions and the outline of the work.

1.1 Complex Object Perception

According to the dictionary definition, complex means something complicated,

hard, and intricate in the structure [63]. In the computer perception field, the char-

acteristics of a complex object can be listed as follows: It is difficult to parameterize

and represent in a general form. It might be non-rigid, not in one particular shape,

capable of being reshaped by external or internal forces and effects. It might be formed

multiple non-similar parts. These parts might be articulated. Also, it might be rigid,

but it is formed by many vertices and difficult to represent by several basic shapes. The

shape, the degree of freedom, or the range of motion can determine the complexity of

an object. There are many complex objects on the earth and easy to see them around

us. First of all, we all the humans are complex. A cable, animals, a human hand,

head, lungs, some biological cells, clothes, towel, trails, trees, Statue of Liberty and
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many other objects can be categorized as complex. Their complexities generate some

challenges in the perception of these objects by the computers and robots. Figure 1.1

shows some examples of complex objects.

Figure 1.1: Complex objects examples. One complex object is illustrated in each

image. A human hand, shirt, person, trail, cable, human face, paper

coating machine, tree, and Statue of Liberty. Paper coating machine and

Statue of Liberty are rigid objects, but their shape and structure are

complicated.
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Seeing, detecting, tracking and understanding the behaviors of the complex

objects are so important tasks for the computers and the robots. These all goals

construct the perception modules of an intelligent system. Perception modules are the

heart of all intelligent systems. Their next acts, movements and the decisions are made

based on the information provided by the perception modules. Since there might be

many complex objects in the interest of the intelligent system, they need to be handled

specially.

Complex object perception algorithms have a rich variety of usages, some of the

applications are:

(1) Robot vision: The robots need to know its surrounding environment, so

seeing the objects around itself is so important to accomplish its task[29] [23]. For

example, an unmanned ground vehicle needs to track the road to drive autonomously

[35]. It may need to detect a human to listen to his/her commands or to avoid from

him/her not to hit [64] [134].

(2) Video compression and indexing: Object detecting and tracking is a part of

some video compression algorithms and multimedia retrieving process from databases

[131] [162].

(3) Automated surveillance: The perception system is used to monitor the object

movements, people and events in the public or private places, such as in front of a

building, a shopping mall, a road, car parks, etc. The system needs to distinguish the

interest of the object, must detect and track it [75] [184] [74] [32].

(4) Medical data analysis: An organ, a tumor in the body of the human must

be segmented and tracked in the medical images to be analyzed by a doctor [76] [5]

[204].

(5) Interactive games and the computer aided programs: They need to detect

and track a human body, or track a human hand to take the necessary inputs to the

software system [165] [174].

In addition to well known and defined detecting, segmentation and tracking

concepts in the object perception literature, Refinement is a complementary task in
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the perception modules. Refinement can be defined as the purpose of obtaining the

exact border of an object from its given rough representation. For example, someone

can provide a box which includes most part of the object and some background, then

he can desire to label all object pixels in the image. The rough representation includes

hints about the location and features belong to the object. In contrast to object

segmentation, the refinement process might bound the region of interest. It captures

its initial feature models from this region of interest.

1.2 Object Representation Approaches

Current object detection, segmentation and tracking approaches can be divided

into two main groups, as illustrated in Figure 1.2. These two groups are defined and

explained in the following sections.

1.2.1 Representation in Low Dimensional Space

In this category, no matter it is a detection, segmentation or a tracking method,

the object is represented in low dimensional space. The object is considered as a rough

shape. This approach does not represent the object in fully detail. The borders of the

object cannot be stated in point-wise. For example, if a person in an image is tried

to be detected, a bounding box, B(w,h,x,y), represents the person. B(w,h,x,y) has 4

dimensions which are box height, box width, its top x, and top y locations in the image.

The algorithm determines the person, it fits the bounding box around it and outputs

the dimensions of this box. In the same way, the object state is the bounding box

in a tracking procedure. This low dimensional state is estimated and updated during

the tracking. Low dimensional representation helps to reduce the complexity of the

tasks, but not enough some type of the jobs which require knowing object borders in

point-wise. 1.3 shows the low dimensional representations of some objects in the image

and 3d point cloud.

As illustrated in the top row of Figure 1.2, there are three paths followed by the

perception algorithms to achieve the final low dimensional representation of an object.
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First way is simply one frame object detection methods. The purpose is to find the

object, if any exists, in a given scene and to determine its location. The scene might

contain challenging background objects. Common approach is to train a classifier to

distinguish and locate the object of interest from the background [176], [36], [143], [7].

A window is slided all over the image. Some features are obtained within this window

to form a descriptor. This descriptor is asked to the classifier to decide whether there

is a searched object inside the window or not.
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Figure 1.2: The diagram which shows different type of perception modules.
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Second path which produces its results in low dimensional space is the tracking

process, as can be seen in the first row of Figure 1.2. At each frame of the procedure,

the next state of the object is estimated according to the features obtained from the

object and the current state. The states are defined in the low dimensional space. Some

methods can utilize from the multiple features. Kalman Filter [79], and its extended

versions [78] [77] [181] became main this type of object tracking principle for years.

Kalman filter is weak at the problems in which the posterior of the tracked object

needs to be multimodal. Particle Filter is designed to handle this kind of problems.

Particle Filters was born at early 1950s. Its first mathematical methods was described

in [113]. It became one of the most popular object tracking methods in last two decades.

Particle Filter has been highly started to applied in computer vision problems after

it was showed in [9] [72] which can be used to track objects robustly in the image

sequences.

Another perception task whose final result in the low dimensional space is called

as Fitting. It is usually an intermediate step to pass from the point-wise to the low

dimensional representation. It can be utilized to combine two types of methods in one

mechanism. For example, if any algorithm outputs the object as a point-wise mask,

an object model can be fit on this mask; hence a low dimensional representation is

achieved. Then, this object representation can be fed to a Particle Filter type tracking

algorithm.

7



Figure 1.3: First row shows the low dimensional and point-wise representations of a

trail in an image. Second row displays the low dimensional representa-

tions of the pedestrians and point-wise representations of several objects

(A coffee mug, a soda can, and a hat) [97] [171].

1.2.2 Point-wise (Non-Parametric) Representation

This group of perception methods does not represent the object in parametric

way. The object is defined as a mask consisting of the points. They output the

border of the object in fully detail. Point-wise representation is more desirable for

some applications, such as gesture recognition, human behavior analysis, robot motion

planning, and etc. Knowing the every detail of the object improves the performance
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of these type of applications. 1.3 displays some examples of point-wise representation

of the objects in the image and 3d point cloud.

There are three types of perception procedures whose output are point-wise rep-

resentations of the objects as displayed in the bottom row of Figure 1.2. The first type

is a Refinement process. In this process, rough shape of the object in the low dimen-

sional space is provided [86], such as a bounding box around a detected human in the

image. Then the Refinement process automatically segments and generate point-wise

representation of this human as a mask. Second type of the processes can be considered

as unconstrained segmentation methods. In contrast to Refinement procedure, they

produce global results without restricting region of the interest. They usually employ

prior knowledge or learned model of the object.

There are some object tracking approaches whose output are the silhouette or

the mask of the object. This type of the methods can be considered as the approaches

which represent the object in point-wise. For example, active contours model is a

famous method which was first introduced in [81] and applied intensely in the tracking

problems which requires exact representation of the object borders. This method,

called as Snakes, attempts to adjust the initialized contours on the borders of the

object in an iterative framework. An energy function is constructed and associated to

the contour. Minimum value of the energy function represents the object borders. This

energy function is minimized iteratively in the Snakes framework. The final position

of the contour draws the object border.

Graph cut is really powerful technique to segment and track the objects by

representing them point-wise [16]. Graph cut has three main advantages which make it

unique and popular in image segmentation problems. First, it does not get stuck in local

minima, so it produces globally optimal segmentations. This property of the graph cut

is so important in a case that if the location of desired object in the image is not known

and specified, but the algorithm is wanted to segment it. Even if the object is spread

out two different unconnected regions in the image, graph cut is be able to segment

and label them as the same object parts. One of the other unique point of graph cut is
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that its energy minimization framework is discontinuity-preserving. It means that the

interactions between the graph nodes, simply considered as the pixels in the image,

can vary over entire image. Since these interactions are different on the border of the

object than in the rest of the image, unlike some other energy minimization systems,

graph cut segmentation is expected to be more gentle and accurate on the border of the

objects. This yields better segmentation results than the approaches which assumes

that the image is smooth everywhere. Another advantage is that graph cut algorithm

runs so fast. If the object resolution is not so high, nearly real time performance can

be caught by today’s powerful computers. Also, if the computational time is really a

big concern, graph cut has its GPU version implementations, so that high resolution

images can be processed. More background about graph cuts is explained in Chapter

3.

1.3 Complex Object Perception by Integrating Multiple Features

The perception algorithms use features to detect and distinguish the object from

the background. Feature selection plays a key role in the accuracy and performance of

the perception modules. The most distinctive feature specific to the object is chosen

from the feature space and integrated into the process. In most cases, the object can

be discriminated from its surrounding environment by its one of low level features,

such as intensity, color, edges, texture, height, depth, contrast, etc. The computer

vision algorithms usually uses the visual features (Intensity, color, texture, and edges)

to represent the object. If good stereo retrieved information is available, also depth

information can be feed to the process. Perception algorithms can be divided into two

groups: The algorithms that uses single feature, and the approaches which integrate

multiple features into its structure.

Single feature algorithms choose low level features and maintain it over the

process. Their implementation and methods usually are simple. Color is the most used

cue in most of the approaches that process camera images. Single feature based some

of the deformable object tracking algorithms are presented in [34], [200], [148], [33],

10



detection algorithms explained in [36], [186], [133] and the segmentation algorithms

mentioned in [120], [67], [139]. In single feature approaches, the selected feature must

be really discriminative for the robustness of the method. If the color wants to be

used as incorporated feature to accomplish a task, the color of the object and the

background in the image sequences should not be red. The object representation needs

to be stable in that feature domain space over the sequences of the sensor information.

Sudden changes in the object definition in the represented domain during the process

breaks down the task inevitably.

Using single feature is not enough to construct a robust object perception al-

gorithm in some cases. Many approaches fuse multiple features in their framework

to reinforce the process. They start by deciding good features to be integrated into

the system. Good features means the best object specific representation. This step

involves careful observation of the object and its background. After selecting the fea-

tures, the following question arises: How the chosen features are going to be combined?

There are numerous of different approaches at this point. Weighting used features in

the method is highly common approach. They can be weighted manually by a human

at the initialization of the algorithm, or dynamically by the system. Another popular

approach is to get help from machine learning algorithms. The feature data set is

trained by a learning algorithm. The weights of the features are asked to the trained

algorithms at the runtime of the system.

In most of the cases, high number of available good features brings better and

robust perception results. Since a single sensor can provide limited number of features,

using multiple different sensors assure more features which can be incorporated. For

example, it is difficult to obtain the depth, height or planar information of an object

from a single camera. Even stereo cameras do not always provide sustainable 3D

features of an object over the image sequences. Therefore, usage of multiple different

sensors is necessary for a powerful system. For example, some of the robots carry lidar,

radar, sonar, IR cameras in addition to color cameras. This type of integrated system

utilize from different information of its environment provided by its different sensors.
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The advances in the technology has facilitated the availability of cheap sensors

in the market for last ten years, such as IR cameras, GPS system, and IMUs, etc.

Hence, the robots become not the only systems which include multiple sensors, but

other devices start to include these sensors. For example, cell phones start to include

GPS and IMUs. It is really important for the vision community that IR cameras start

to show up in home devices, such as in Kinect game console by Microsoft. The sensors

of Kinect has not been only used in the game consoles, but has taken the attention

of the researchers. It became popular in vision and robotics community to solve field

related problems by using Kinect obtained data.

I believe in that we are going to see more integrated devices which will include

multiple different sensors as Microsoft Kinect in the future. The availability of multiple

features obtained from these devices will provide opportunities to solve complex and

challenging vision and robotics problems. Therefore, the methods to integrate multiple

features in efficient way will play important role in the technology.

1.4 Thesis Statement and the Purpose

Integrating multiple features from one sensor, or if available from multiple sen-

sors, provides more accurate and robust complex object perception algorithms. On one

side, one of the objectives is to develop methods to refine and track complex objects in

point-wise by incorporating multiple features from multiple sensors into the graph cut

framework. These methods are expected to be robust to different illumination condi-

tions, shape or pose changes and to work in cases in which the problem is not solvable

by using only one cue, so they utilize from different cues adaptively and jointly.

Another purpose is to develop multimodal human detection algorithm which

utilize from multiple sensor data. The human is represented in the low dimensional

space in this method. Multiple sensor architecture is constructed to obtain multiple

features from different sensors and to increase the detection rate of the human classifier.

This architecture aims to supply complementary and redundant information to enhance

the confidence level of the detections, so this approach increases the system reliability.
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1.5 Thesis Contributions

This thesis makes the following contributions into the field:

Novel multimodal human classifier: An accurate and computationally

very fast multi-modal human detector is proposed [88]. This 1D+2D detector fuses

1D range scan and 2D image information via an effective geometric descriptor and a

silhouette based visual representation within a radial basis function kernel support vec-

tor machine learning framework. Unlike the existing approaches, the proposed 1D+2D

detector does not make any restrictive assumptions on the range scan positions, thus it

is applicable to a wide range of real-life detection tasks. To analyze the discriminative

power of the geometric descriptor, a range scan only version, 1D+, is also evaluated.

Extensive experiments demonstrate that the 1D+2D detector works robustly under

challenging imaging conditions and achieves several orders of magnitude performance

improvement while reducing the computational load drastically.

Trail tracking in low dimensional space: Several trail tracking algorithms

for autonomous outdoor robot navigation are developed [149] [150] [151] [153] [154].

These algorithms maintain low dimensional representations of the trail over the image

sequences. In one framework, the trail region is modeled as a triangle if the color camera

is used. In other frameworks which utilize from omni-directional color camera data, a

circular arc segment of constant width represents the trail. The visual cues, ladar and

stereo camera derived structural information are combined in the frameworks. The low

dimensional states of the trail are estimated via Particle Filter.

Refinement of low dimensional shapes of complex objects: This thesis

highly examines refinement bridge between low dimensional and point-wise represen-

tations of complex objects in the literature. Large datasets of different kinds of the

objects, such as trail, human hand, and household objects in front of different, com-

plex background, under different illumination conditions, and poses are addressed to

be refined. Different possible low dimensional representations are considered during

the experiments. For example, the cases in which the representation covers some large
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amount of the background or it is highly includes object points are discussed and dif-

ferent methods are proposed. The problem of object refinement is handled by various

ways, such as incorporating multiple cues from different sensors, with or without prior

information, structure, shape and color related cues.

Refinement of complex objects with graph cut framework: The power

of the graph cut framework was analyzed for Refinement of the objects in the images.

The suitability of several previously published segmentation algorithms were compared

in terms of both the agreement with ground truth and the speed on a range of trail

images with diverse appearance characteristics. These algorithms include generic graph

cut, a shape-based version of graph cut which employs a distance penalty, GrabCut,

and an iterative superpixel grouping method. Some modifications are made in the

algorithms to make them work better for the recorded data sets. It is concluded that

graph cut is really a powerful tool which can serve as a refinement method if a rough

estimation of the object is given by a low dimensional shape tracker. This work is

published in [86].

Improvements on standard graph cut method: Standard graph cut method

was modified to incorporate color and shape distance terms, also adaptively weight

them at run time to favor the most informative cue in different visual conditions.

Furthermore, single-frame refinement method is extended to serve as the basis of the

tracker which works for a variety of object types with complex, deformable shapes in

complex background. Some basic adaptive weighting method is investigated to incor-

porate the shape distance and the color features. This weighting method clusters the

pixels in the image and measure the distance between object and background models

by creating color histograms. It is published in [87].

Low Dimensional Human Shape Refinement: A novel algorithm which

combines low and high level observations in the graph cut framework is developed

for the purpose of refining low dimensional representation of the human shape. This

representation is a generic shape which is provided by some other human detection or

tracking methods. The proposed algorithm does not utilize from internal computations
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of those methods which provide the estimated shape. Therefore, it is generic and

applicable for any kind of method which produce a similar human shape. For this

purpose, a novel point-wise shape descriptor is developed. This powerful descriptor

utilizes from the depth information of the scene by generating several shape related

cues, such as relative geodesic distance, vectorial spatial distance of a point to the

middle point of given estimated rough representation. Furthermore, it incorporates

the normal of a point. The descriptors are trained by Random Forest algorithm which

enable to favor most important cue in the descriptor. In order to combine multiple low

and high level observed cues jointly, such as point-wise shape confidence scores, the

color and estimated ground plane, multi-layer graph cut framework is introduced for

this purpose. The proposed method outperformed existing suitable algorithms in the

experiments.

Moreover, the same problem is tried to be solved by extending previously devel-

oped graph cut method which does not incorporate prior information, but only fuses

generic cues obtained from the single test image.

Generic multimodal graph cut tracker: A graph cut based point-wise

tracking algorithm which combines multiple cues obtained from depth and color cam-

eras is developed. This tracker does not make any assumptions and restrictions about

the shape of the object, so it is not a specific object tracker, but it is generic for all

object types. It employs a location estimation technique in which SIFT keypoints are

matched between the frames. In order to make it robust, it calculates the displacements

of the points in 3D Euclidean space. This tracker generalizes the shape cues developed

for the purpose of human refinement. It fuses the color and point-wise shape cues in

the same feature vector to allow weighting the cues locally around the object. The

proposed tracker is experimented with several datasets which includes complex and

deformable objects. It performs better than compared tracking algorithms which are

in the similar category allowing dense point-wise tracking of the objects.
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1.6 Thesis Outline

The details of the proposed multimodal human detection algorithm is explained

in Chapter 2. The existing methods which obtain cues from single sensor or fuse

features extracted the data of multiple sensors are outlined in this chapter. The sensor

setup, computation of the human descriptor, the details of DontHitMe dataset, and

the experiments are described.

The basics of graph cut segmentation method is explained in Chapter 3. The

background, different application fields of the graph cut, the improvements and its

extensions are explored in this chapter. Furthermore, the priors, the cues and possible

adjustment techniques of the parameters in graph cut formula are mentioned.

Chapter 4 makes an introduction to the refinement of complex objects such

as, trail, a human hand and head by analyzing the performance of modified graph

cut based algorithms for this purpose. It proposes a new improved graph cut based

refinement algorithm for the complex objects by combining spatial distance penalty

depends on the object shape, and adaptively changing between most beneficial color

spaces. Moreover, the results of the proposed method is presented for the household

objects.

Different approaches are proposed to refine given low dimensional human shape

in Chapter 5. These approaches are categorized in two groups which use generic cues

only available in the current processing image without fusing the prior information,

and the other method which fuse prior shape information. A novel point-wise shape

descriptor is introduced. Also, the details of constructing multi-layer graph to incor-

porate the low and high level observations, in this case it is an estimated ground plane,

is explained.

In Chapter 6, possible approaches for point-wise object tracking is discussed.

On one side, previously developed graph cut based refinement methods is extended to

track the objects which are deformable and whose displacement between the frames is

so small. This method does not estimate the location of the object. On another side, a

multimodal point-wise tracker which utilizes from multiple sensor data is proposed. In
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contrast to previous tracker, it estimates the displacement of the object by computing

the keypoint matches between the frames. Also, it learns the shape and the color of

the object on the fly.

The possible extensions of the proposed methods in this thesis, and the future

work in this field is discussed in Chapter 7.
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Chapter 2

LOW DIMENSIONAL MULTIMODAL HUMAN DETECTION

Perception modules are the heart of the intelligent vehicles which provide the

information about the surrounding environment of the robot. The next acts of the

robots are determined based on the types, localizations, arrangements, poses of the

objects around them. Humans are considered as special type of the objects, especially

for the robots which interact with them, work in proximity to the humans, or try to

avoid from hitting them. Humans are living creatures, so they more important than

any other regular obstacles. Knowing the positions, motions, poses and presence of the

humans enable the robots to better move and react to their actions.

According to National Highway Traffic Safety Administration reports [48], thou-

sands of pedestrians die in the traffic accidents only in USA. At least same numbers

of pedestrians get injured because of the car hits, some of them become handicapped

as the results of these hits. Since human life is most important value on the earth,

intelligent outdoor systems should have the ability to detect and localize the humans to

reduce the accidents in which a human might be injured or died. Detecting the humans

is not only important for outdoor robots, it is also crucial part of indoor robot systems

which interact to the humans, work closely to them, and wait for their commands must

be able to detect the humans.

Human detection is a complicated and difficult task for the intelligent systems.

There are many various challenges which make this task hard. These challenges can be

categorized in two main groups. First group is formed by the external, also can be called

as environmental, factors. These factors are not object depended, but they are the

challenges caused by the entities which surrounds a human. Illumination conditions,

night/day times, insufficient lighting, shadows, headlight of the cars on the roads fits
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into this category and have absolute effects to the performance of the detection process.

Even, weather conditions, such as snow and rain, might create different pitfalls by

generating noise in the scene, so they must be handled accordingly. Partial occlusion

and dynamic objects in the background are other types of external factors which might

require special attention.

Second group of challenges are due to the human itself, thus may be called

as the internal factors. A human consists of different body parts. Some body parts,

such as a hand, foot, and whole body can deform, so they might appear in different

shapes. For example, they can sit, walk, run, bend to take something on the floor, and

make some gestures. Also, a human can have various poses from distinct view points.

Their height and weights can differ from one to another. Their body colors and hair

lengths change. Their different clothes augment their shape variations. As an example,

someone can wear a long skirt and a coat which cover his/her legs and arms. These all

factors complicate the human detection objective.

Human detection methods are divided into two main groups, namely single

modal, and multimodal. Single modal human detection algorithms utilize from just

one sensor data. Color camera is the most common device used in the intelligent

systems for single modal detection algorithms. Huge amount of research has been con-

ducted on single modal human detection in last decades. Even though some of these

algorithms perform very well, they still suffer from the sensor specific limitations. For

example, color camera based single modal detection methods fail or does not reach the

expected accomplishment level under different visual conditions. Therefore, multiple

sensor architecture is constructed to increase the detection rate of the classifier. The

methods that process and integrate multiple sensor data to increase the system relia-

bility and redundancy are called as multimodal human detection algorithms. In these

approaches, complementary and redundant information are supplied from the multi

sensor architecture to enhance the confidence level of the detections.

A multimodal human detection classifier which fuses LIDAR (Light Detection

and Ranging) sensor and color camera data is developed. This algorithm integrates
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Figure 2.1: Left image shows the detected pedestrian by the proposed multi-modal
human classifier under severe illumination conditions. Single-modal clas-
sifiers [36] (and conventional multi-modal approaches) are not be able to
detect as can be seen in the right image.

the features obtained from both of the sensor data in a joint way. It is robust under

different illumination conditions, can detect a human even if the LIDAR hits any part

of the body as can be seen in Figure 2.1. It narrows the region of the interest on the

image, so it runs fast. Fusing multiple sensor data not only improve the computational

time, but also increase the detection accuracy.

This work makes some contributions to the human detection area in the follow-

ing ways:

1: A highly accurate and computationally fast multi-modal human detector

that fuses 1D range scans and 2D images is presented. This 1D+2D detector does not

make any restrictive assumptions about the range scan positions.

2: A simple yet effective geometric descriptor is introduced for LIDAR data. A

single-modal human detector, 1D+, using this descriptor is developed. This detector

achieves higher accuracy than the state-of-the-art human classifiers based on 1D range

scans.

3: It is shown that the multi-modal classifier can be trained with less precise

range information, for instance using Kinect sensor depth data, to eliminate the need
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for expensive and cumbersome manual labeling.

A review of the related work and background about the human detection are

summarized in the next section. Section 2 explains the human data set collection,

ground truth generation and the registration method of 1D LIDAR data onto Kinect

Depth and RGB images. LIDAR and image data feature extraction, fusion modules,

the training algorithm and the classifiers are described in Section 3. The tests and the

results of both single modal and multimodal classifiers are detailed and compared in

Section 4. Finally, the future work and the direction of this work are drawn in the last

section.

2.1 Related Work

Computer vision and robotics communities have been conducting excessive re-

search on the human detection for years. In both of the fields, selected sensor types

has a direct impact on the fundamentals of the developed method, so it is reasonable

first to mention about the used sensors for this purpose. Monocular cameras are the

most common sensors employed in the human detection systems. They are cheap and

affordable. Stereo cameras are another type of the sensors chosen for the object de-

tection. They can provide 3D structure of the human body as well as the scene. 1D

and 2D LIDARs have the capability to provide structure information in outdoor and

at dark, so they have been taken place in human detection systems. Infrared cameras,

such as Kinect, have become so popular in the last years and their depth data has

started to be used for developing human detection algorithms. The human detection

algorithms can be categorized basically in two groups. They are called as single modal

and multimodal detection methods. The details of these two groups are explained in

the following sections.

2.1.1 Single Modal Human Detection

The methods which utilize from one sensor and obtain the features from its data

are called as the single modal approaches. There are two essential sensor types used
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in this group of methods. First group includes the visual sensors, such as monocular

cameras. The sensors which provide geometric cues, such as 1D and 2D LIDARs,

Kinect type IR cameras form the second category.

2.1.1.1 Visual Single Model Human Detection

Visual human detectors take a camera input image and try to determine the

existence and the locations of the humans in it. If there are no constraints and prior

knowledge about the possible positions of the humans in the given image, a human is

searched in each portion of the image. The search methods can be divided into two

main groups. First group of approaches look for the whole human body in all possible

sub-windows of the image. This search is applied by sliding a window on the image

pixels. Different window sizes are tried in the process, because of the facts that a

human might be close to the camera, so his/her body size on the image changes, and

naturally a human size might vary from one to another. The features extracted from

this sub-window are asked to the classifiers to decide whether there is a human inside

of it or not. Haar wavelets are used to construct human descriptors in [136]. A linear

support vector machine (SVM) is trained with these descriptors. This method was

extended in [121]. It obtains multiple features for different human parts within the

sliding window. Multiple classifiers are trained and their responses are aggregated to

determine the existence of a human.

A novel gradient and edge based descriptor, called as histogram of oriented

edges (HOG), is introduced in [36]. In this method, gradient directions are calculated

for the each pixel in the image. The image is divided into cells and a histogram is

hold for each cell. Gradient directions of each pixel in the cell are accumulated into

the histogram bins. Accumulated value in that bin is simply gradient magnitude.

For better invariance to illumination, shadowing; contrast-normalization process is

performed in the block level. Each block consists of several cells. A feature descriptor

is the vector of all components of the normalized cell responses from all the blocks in

the detection window. HOG descriptors are trained by SVM. The performance of this
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approach is considerably good. Later, its cascaded model is trained in [212] and a high

close to real time performance was achieved.

Covariance features are first introduced in [186] for human descriptors. A human

is represented as several covariance matrices of features, such as intensity, high order

derivates, etc. Covariance matrices do not lie on a vector space, so classical machine

learning techniques are not sufficient. A classifier based on Riemannian Manifolds is

developed to train covariance matrices in [185].

The second group of human detectors are based on identifying human body parts

or common shapes [46] [71] [156] [116]. In these methods, local features of the body

parts are obtained and combined to form the human models. Different part classifiers

are trained using Adaboost in [119]. A part is represented by the co-occurrences of local

orientation features. Joint likelihood of part occurrences is calculated to decide on the

existence of a human. Human silhouette information is taken into account in [52] and

[133]. In [133], a classifier is trained whose features are retrieved from the silhouette

information. The method described in [52] tries to match extracted silhouette features

from the test area to the real positive human silhouettes to determine the human

locations.

2.1.1.2 Single Model Human Detection using 3D cues

This group of single modal human detectors consists of the methods which

obtain their features from 3D or depth data. The algorithms in this category obtain

their 3D data directly from the sensors, or they can pre-process the sensor data to

generate 3D data. For example, depth information provided by a IR camera and stereo

cameras is converted 3D point cloud. They do not utilize from the visual cameras. Some

of these types of approaches are outlined in the following paragraphs.

3 types of body parts, head, hand, and foot, are classified by processing only

depth images in [140]. In this work, 3D point cloud is generated and segmented to the

meshes. K geodesic local interest points are found for each mesh. Then, a patch from

each interest geodesic point is extracted. These local patches are rotated/normalized
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with respect to their orientation direction. Orientation direction is calculated by the

geodesic interest point detection algorithm. It relies on the assumption that geodesic

distances on a surface mesh are largely invariant to the mesh deformations and rigid

transformations. A dictionary of the local image structures is constructed by using

the local patches and a boosted classifier is learned from the dictionary entries. This

method claims that it outperforms the sliding window approaches. However, it does not

mention about the similar segmented regions, such as a person standing and touching

on a wall. These type of scene configurations might make the algorithm fail.

The depth images are converted to 3D point clouds in [70]. A detection window

is slided in the point cloud. Each sliding window is reprojected to the depth image.

The sliding window is divided into rectangles with different widths and heights. The

depth values in the each rectangle are histogramed and their Bhattacharyya distances

are is calculated for each possible pair of rectangles. These values form a huge feature

vector. Occlusion in a sliding window is detected and those pixels are excluded by

weighting in the boosting process. Adaboost is chosen as the learning method to train

the feature vectors.

The method described in [84] processes the depth data without converting it

to 3D point cloud. Depth images are transformed to spatial depth histograms in X-Z

spatial axises. These histograms form method specific images. 4 different oriented,

0,45,90,135 degrees, elliptical filters are convolved on these images. Filter responses

are threshold to obtain the back-front and left-right of the body. A bounding box in

which a candidate human stands is achieved. In the second phase, human is verified by

a face recognition or head-shoulder matching algorithm. This method does not include

a training algorithm. It is purely based on the filter responses. As an improvement of

this work, some training techniques can be tried after having the bounding boxes.

Some geometric features are obtained from a single layer Lidar in [4]. Firstly,

the Lidar data is segmented into blobs. 14 geometric features are extracted for each

segmented blob. These features build a descriptor for a leg of the human. Feature

vectors are trained by Adaboost algorithm. A single leg model is learned in this way.
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The Velocities of the matched parts between two frames are incorporated as a feature

in some experiments. The Radius of the circle fitted to the segments is determined as

the most informative feature. High accuracy is achieved in their tests. This algorithm

is real-time.

Lidar data based features for the pedestrian detection in urban scenarios are

exploited in [142]. Multi layer Lidar(Ibeo Alasca) is chosen as a sensor to retrieve 3D

data. Each scan of Lidar data is segmented and 15 different geometric features are

extracted for each segment. Naive Bayes, Gaussian mixtures models, Neural Networks

and SVM are separately tested to classify a segment as a human leg. GMMs and NN

perform better than the others. No correlation between multi layer data is considered

due to synchronization issues among the layers.

A system to detect and track the humans using only Lidar data is presented

in [129]. 2D virtual Lidar scans are obtained by taking a layer from 3D point cloud

and projecting it to 2D plane. The virtual Lidar scan data is segmented, and then

the bounding boxes are fitted to each segment. The bounding boxes are tracked and

matched between the frames via Kalman filtering Each tracked segment is scored to

detect the human. Human detection score of the segment is so simple only consists of

4 features. Some of the features are achieved from the velocity of the segments which

means tracking and inter-frame process is necessary. The disadvantage of this method

is that there are so many thresholds, and no learning method is involved.

A random finite set based method of detection and tracking of the pedestrians

using 2D Lidar in dynamic environments is explained in [80]. 2D data of Velodyne

Lidar sensor is used. Human detection method is so simple. Mean shift segmentation

and blob extraction are performed on the data to find ROI. Simply, the pedestrians

are assumed to be in ROI. Then the pedestrians are tracked by probability hypothesis

density (PHD) filter. It is assumed that the objects move according to Gaussian

dynamics.

25



2.1.2 MultiModal Human Detection

In this category, it is utilized from multiple sensors to detect the humans. The

underlaying idea of using multiple sensors is that combining the advantages of multiple

sensors and their data in the same system yields better results. Some of the existing

techniques which construct multimodal human detectors are described in following

paragraphs.

A fused Lidar and vision based pedestrian detection system is explained in [143].

This work proposes centralized and decentralized fusion methods of Lidar and visual

features. Multi layer Lidar is used, but each layer is processed separately because of

the problems of synchronization between the layers, pitch oscillations and road incli-

nations. HOG and COV features from color camera, 14 geometric features from Lidar

data are obtained. Centralized approaches combine the Lidar and vision features in the

same feature vector. FLDA and SVM perform best in the centralized classifier exper-

iments. Decentralized approach combines a pair of classifiers, one from among Lidar

based human classifiers, one from the visual classifiers. The pairs of the classifiers are

selected by a minimal-redundancy-maximal-relevance method. The best pair consists

of GMMC-Lidar and FLDA-Vision. Decentralized classifier test results are better than

the centralized human classifier. Lidar based miss detections (false-negatives) occur

in the cases where the pedestrians appear very close to each other or close to other

objects, or if they are between other objects. Vision-based missing detections occur in

low contrast images or if ROI has intense texture.

The method described in [55] integrates vision and range data for the object

detection. 2D scan range data is interpolated to fill missing 3D points for each pixel

in the corresponding image. A boosted visual only detector is constructed by sliding

a window; the visual features are extracted inside this window. A separate boosted

object detector which obtains the features from 3D data is built in the same way.

Multimodal object detector is simple weighted combination of boosted 2D image and

3D classifiers. The computational time of this human detector is so high.

A human body part detection algorithm using 1D range data and images is
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explained in [213]. Human leg is detected processing Lidar data in this approach. 13

geometric features are extracted from Lidar data to train Adaboost for a single leg

detector. The method assumes that a person has 2 legs, so it tries to detect both of

the legs. The spatial positions of detected legs and their arrangements are modeled

and learned from the data, called as part based leg model. The part based leg model

is a probabilistic model of Gaussian distribution. The other parts of the human body

are detected by obtaining visual features from the omni directional camera. Upper-

body, lower-body, and full body in the color image are detected by a Haar-like-feature

classifier. Part based model extended by adding 3 new parts detected in the image.

The same method(Gaussian distribution) is used to model part based human. Now,

a human consists of 5 parts, 2 detected from Lidar and 3 from image data. In this

approach, both legs detector and other parts of the human detector must run separately.

Features are not combined in a single Adaboost human model trainer.

A cascaded multimodal human detection method, which uses Lidar and color

camera data, is described in [172]. In this classifier, two different classifiers are built.

First classifier to detect human legs by training geometric features obtained from Lidar

data. Second classifier is a visual person detector, off-shelf HOG classifier [36]. Human

leg detector determines the region of interest and provides a score which states how

likely there is a human in that region. Then, HOG classifier runs in that region of

interest by trying different scales. Information achieved from these two classifiers are

fused using a Bayesian model.

A recently proposed human classifier [7] focuses on reducing the computational

time of the human detector in test time. This approach utilizes from two different

data, color camera and 3D point cloud data retrieved from stereo images. There

is no geometric features extraction or information fusion mechanism in this method.

However, 3D information is exploited to reduce the search time in the images. In

addition to this improvement, the time spending to scale the search window is moved

to training phase of the classifier.
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2.2 Sensor Setup

In supervised learning, the quality and quantity of training data are very critical

for the final performance of the classifier. More training data prevents from overfit-

ting, improves generality, and enables trained models to capture possible variations of

target class samples. Since our purpose is to construct an inclusive and unconstrained

classifier that performs accurately without making any assumption about the range

scan position on the human body, a large number of training samples is required for

training. However, it is cumbersome to collect such a large number of registered LI-

DAR and camera data where range scans hit humans on different parts of their bodies.

To capture different pose, appearance variations and scan positions, the height and

position of the LIDAR must be modified excessively. This is definitely a tedious and

inefficient task with no guarantee of capturing sufficient amount and quality of data.

As an advantage, it is possible to generate a high number of diverse range

scans for positive and negative samples by using a depth camera that provides the 3D

structure of the scene. Any number of scans can be obtained from a depth image by

converting the geometric information into LIDAR-like readings synthetically.

Towards this goal, a sensor setup composed of an Asus Xtion Pro Live IR and

color camera, and a Hokuyo URG-04LX LIDAR can be constructed. In this way, three

sensors, IR camera, color camera and LIDAR can be registered in the same coordinate

system. The sensor setup can be seen in figure 2.2. Data registration steps are shown

in Figure 2.2.
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Figure 2.2: The registration of Lidar and color camera data.

A multi-modal human data set, called as DontHitMe, is used. It is collected in

outdoors (parking lots, etc.) and indoor buildings. Since the IR camera is sensitive to

the sunlight, outdoor data can be recorded when there was no direct sunlight in the
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scene. In addition to the color and depth images, this dataset also includes registered

1D LIDAR range scans. It contains 40,000 images of 450 different humans in different

poses, appearance variations, lighting conditions, and shadow artifacts. It includes

several human shapes that present a challenge to existing human classifiers, such as

women in skirts. To capture the variance of the human poses, it is recorded sequentially

at 8 fps. The location and height of the setup is changed during the process to take

samples in different backgrounds. Modifying the height of the sensor setup diversifies

the 1D range scans.
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Figure 2.3: Example images from DontHitMe dataset. There are some image modi-

fications in this figure. Please check the Appendix A for the details.

31



Figure 2.4: 1D range scans are generated from the depth camera data for each positive
window.

The original LIDAR range scans hit human body on different parts from the

legs to the head. A total of 3,600 manual ground truth positions in images, depth

camera data, and range scans are annotated. Each human in the dataset is labeled

with a bounding box, W (x, y, δx, δy). DontHitMe dataset is divided into two differ-

ent categories. The first dataset, called as DontHitMe-Indoor, includes 30K frames

and 3,000 ground truths which are recorded indoor buildings. The second dataset is

collected at night. It contains more challenging cases for human detectors, such as

insufficient lighting and severe illumination changes because of car headlights. This

dataset contains 10K frames and 600 ground truths, called as DontHitMe-Night. A

gallery images of DontHitMe can be seen in Fig. 2.3.

To complement the original LIDAR data, the depth camera data in DontHitMe-

Indoor are processed to obtain additional synthetic range scans as shown in Fig. 2.4.

These horizontal scans are produced by uniformly sampling multiple positions vertically

along the labeled human windowW for the positive samples. In this way, multiple scans

are generated from each part of human body, from the legs to the head. A depth scan

Li = (d1, ..., dmi
)i is discarded if it contained points where the depth camera does not

provide a valid distance.
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2.3 Human Classifier

To take the advantages of the geometric and visual information, our 1D+2D

multi-modal human detector combines the range scan and image descriptors into a

single representation. It works in the joint higher-dimensional feature space. A diagram

of the classifier is given in Fig. 2.5.
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Figure 2.5: Training process of the 1D+2D detector.
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For a training image window Wi, the corresponding 1D range scan segment

Li = (d1, ..., dmi
) within the window can be obtained either from the LIDAR or from

the depth camera. In the case of the LIDAR sensor, there is a single, horizontal,

synchronously acquired range scan segment within the window. On the other hand,

the depth camera can provide multiple horizontal range scan segments, which are

particularly valuable for training. Here, d is the depth, i.e. the distance of the sensor

to a scene point in camera normal direction.

2.3.1 Geometric Descriptor

In contrast to [4] that assumes the geometric descriptor corresponds to leg re-

gion, our geometric descriptor f 1D applies to every part of the human body. It is

obtained by the following procedure:

1) Depending on the size and depth of the human objects, range scans Li for

positive samples form arbitrary length vectors

f 1D
i = [d1, ..., dmi

]Ti , 1 ≤ mi ≤ max(‖wW‖) (2.1)

where ‖wW‖ is the width of the window. In order to map the arbitrary length feature

vectors onto a uniform, fixed dimensional feature space Rm, an m-point bilinear inter-

polation, Bm, is performed on f 1D
i . After the interpolation, the dimension of f 1D

i , that

is mi, becomes m

f 1D
i = [d1, ..., dm]Ti ← Bm(f 1D

i ). (2.2)

2) The distance between the sensor setup and a human differs significantly in

the scene. To compensate for this distance, the closest point depth, dC , in f 1D
i to the

sensor setup is determined. Then, dC is subtracted from f 1D
i .

dC = min(d1, ..., dm), dC 6= 0 (2.3)

f 1D ← f 1D − dC = [d1 − dC , ..., dm − dC ]T . (2.4)
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3) Human can stand in front of all kinds of backgrounds. Background clutter,

as well as other objects in the scene, may be positioned at different distances from

the human objects. This causes considerable geometric feature variation around the

silhouette of the human body. Capturing all this variation in the training data would

be one approach. Yet, this requires a huge amount of training data, which would

be impractical. Besides, it may cause the classifier to fail because of the weakened

discriminative power of the descriptors.

Therefore, the depth values of the feature vector elements that are above a

human shape threshold are upper bracketed. The threshold, dH , is set to the maximum

possible radius of a human. If a point in the feature vector f 1D has a depth value larger

than the threshold, it is set to the maximum radius. As a result, the variation due to

the other objects and background clutter are eliminated effectively:

dk =

 dH if dk ≥ dH

dk otherwise
. (2.5)

2.3.2 Visual Descriptor

Due to its shape representation ability, computational simplicity, and robustness

to illumination changes up to a certain degree, the HOG feature is used to form the

visual part of our human descriptor, f 2D = [v1, ..., vn]T in the classifier. The HOG

features can represent efficiently the local appearance by a distribution of the edge

gradients in a cell within an image region. These cells, either overlapping or on a regular

grid, are smaller components of an image window. A histogram is obtained within a

cell. These local cell histograms are concatenated into a larger window descriptor. All

cell histograms of the window descriptor are normalized using the accumulated energy

within the window for additional illumination robustness.

2.3.3 Combined Descriptor & Classifier Training

The geometric f 1D and visual f 2D features are concatenated in the same feature

vector to form the final multi-modal human descriptor, f .
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The raw geometric and visual feature vectors have different dimensions, thus

their individual contributions in the combined multi-modal descriptor are not balanced.

To overcome this issue, individual vectors are normalized to unit norm:

f 1D ← f 1D∑m
k=1 dk

(2.6)

and

f 2D ← f 2D∑n
k=1 vk

. (2.7)

The combined descriptor in Rm+n is then f = [f 1Df 2D]T .

In training, the negative samples are chosen from the windows where there are

no human objects. Since the window size changes according to the depth value of the

window center, the size variation of the negative samples comes naturally. Even though

in practice only LIDAR sensor data is available with the image, our training process

still benefits from the additional depth camera data.

We use Support Vector Machines (SVMs) as our base classifiers. SVMs fits a

hyperplane between the positive and negative training samples in the feature space.

The decision boundary is defined by a set of support vectors that separate the positive

and negative samples in a maximum margin. The decision function of SVM is

h(f) =
m∑
i=1

αi[φ(f).φ(f ∗i )] (2.8)

where αi are the weight of the corresponding m support vectors f ∗i and φ is a mapping

function to a space H. The dot products in the decision function can be replaced by a

kernel function:

k(f, f ∗i ) = φ(f).φ(f ∗i ) (2.9)

By using a kernel function the classifier becomes a hyperplane in H, yet it may be non-

linear in the original input space. For given a set of labeled samples (xi, yi) where the

labels yi = {−1, 1}, the learning problem of SVM can be formulates as the minimization

of

min
w,ε,b

1

2
‖w‖2 + C

m∑
i=1

εi (2.10)

37



subject to

yi(w.fi − b) ≥ 1− εi, εi ≥ 0 (2.11)

where εi a penalty for the misclassified samples. The above optimization tries to classify

as many training sample as possible correctly. Also, the minimization of ‖w‖ makes

the margin as large as possible. C is a variable term to set the relative influence.

We use the Radial Basis Function (RBF) as the kernel function of SVM:

φ(f).φ(f ∗i ) = exp(−γ‖f − f ∗i ‖2) (2.12)

where γ is the width of Gaussian kernel width. By using RBF, it is always possible to

find a decision function that perfectly represents a shape in a higher, possibly infinite,

dimensional space. By incorporating RBF, SVM decision function takes the final form

of

h(f) =
m∑
i=1

αiexp(−γ‖f − f ∗i ‖2) (2.13)

the result of final classification is the sign of h(f). This decision function depends on

the distance between the support vectors and the data, thus normalizing the geometric

f 1D and visual f 2D feature vectors to unit norm, as formulated in Eqns. 2.6 and 2.7,

is necessary. Otherwise, higher dimensional features would be favored by the SVM

decision function.

In addition to the above 1D+2D detector, a single-modal classifier, called as

1D+ detector, is also trained by SVM using only the 1D range scans to assess the

discriminative power of the proposed geometric descriptor.

2.3.4 Fast Detection

Since the speed of the human detection is an important factor, the 1D+2D

detector is employed in a joint fashion that takes advantage of the depth information

to eliminate the unnecessary window evaluations.

To determine whether a test window depicts a human, the corresponding 1D

and 2D features are computed on the registered data. The range scan line L is aligned
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with the 2D image I by a perspective transformation LI : T (L) to obtain a set of image

pixel coordinates LI = (p1, ..., pn) in the image.

A search window W (x, y, δx, δy) centered around pk is slided on the coordinates

of LI . The size (width δx and height δy) of W is set according to the original depth

value dk of the point pk such that for smaller depth values (objects closer to the sensor

setup) the window size becomes larger. The window size is also proportional to the

average human size at the corresponding original depth value.

There is no guarantee that the LIDAR beam always hits a specific level of the

human body in a real application, thus the vertical position y of the image window

W is not fixed. Instead, multiple windows at different vertical positions y ± ∆yj are

tested for each pk. Similar to the selection of the window size, the number of the

vertical windows and their separation are determined by the original depth value of

the center point. In this case, if dk has a large value, a smaller vertical jumps ∆yj

between multiple windows is desirable.

Within each window, the geometric descriptor f 1D and visual descriptors f 2D

are computed, normalized, and concatenated into f . If the sign of the h(f) in the SVM

classifier is positive, a human is detected by the multi-modal classifier. Algorithm 1

outlines the testing procedure.

In contrast to the conventional visual-only human detectors that need to search

entire image at different scales, our 1D+2D classifier reduces drastically the search

space. It eliminates completely the image scaling step. Using LI help to prune most

of the image areas, which decreases the computational load greatly.

In practice, window evaluations can be ordered from nearest to far based on the

LIDAR sensor depth values to determine the most critical object first.

2.4 Results

Several experiments were conducted to quantify the performance of the proposed

multi-modal human classifier, 1D+2D, and its range scan only version, 1D+.
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Algorithm 1 Detection Algorithm

Inputs: L = (d1, ..., dn) range scan points, I, T , h
1: * Compute LI , by LI : T (L)
2: for k=1, ... , n (all points in LI)
3: * Scale search window W by 1/dk
4: * Compute geometric descriptor f 1D = [d1, ..., dm]T

inside W using Eqs. 1-5
5: * Determine, ∆yj, vertical jump offsets from dk
6: for each ∆yj for W
7: * Compute HOG f 2D = [v1, ..., vn]T

8: * Normalize f 1D and f 2D

9: * Concatenate f 1D and f 2D to f = [f 1Df 2D]T

10: * Compute h(f) =
∑m

i=1 αiexp(−γ‖f − f ∗i ‖2)
11: * if h(f) > 0 detect human, remove underlying points

from LI

In the first experiment, the performance of 1D+ detector is analyzed. 46,000

positive and 376,000 negative samples from the LIDAR sensor scans and depth images

of DontHitMe-Indoor dataset are obtained. A total of 43,000 positive samples are

generated synthetically from the depth images by uniform sampling and additional

3,000 positive samples are obtained from the recorded 1D range scans.

In order to reduce the variability in the testing scores, multiple rounds of 10-

fold cross-validation are performed. It is aimed to see the performance of the 1D+

detector at the different parts of the human body. Therefore, the positive samples

in DontHitMe-Indoor dataset are divided into 3 categories, as upper body, torso and

lower body.

The outcomes of the proposed and the existing state-of-the-art classifiers for the

separate human body parts and for negative samples can be seen in Table 2.1. The

results are compared to [4], which is a 1D range scan based human classifier. As visible,

our 1D+ detector outperforms [4] at least by 20.2% for each part of the human body.

The result of this experiment shows that assumptions on the visibility of the legs is not

valid for real-life scenarios. The 1D+ is more robust and achieves remarkable accuracy

at each level of the human body as can be seen in the detection performance curves

of the classifiers in Fig. 2.6. As expected, the method explained in [4] shows its best
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Figure 2.6: ROC curves of the 1D+ Detector and Arras’s classifier [4] at different
parts of the human body.

performance if the range scans hit the lower part of the human body. Whereas the

performance of our detector is almost same at different parts of the body. Proposed

1D+ does not miss any human at 89% false detection level. One of the main reasons

of the consistent performance of our classifier at each part is that the positive samples

are provided to our detector uniformly from different body parts in the training phase.

Also, it learns more diverse geometric cues from every different part of the body from

head to the feet.

Another experiment is conducted to measure the performance of the proposed

1D+2D detector. A total of 1,000 positive and 10,000 negative visual descriptors are
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Table 2.1: Comparisons of 1D range scan based human detectors for different human
body parts

Test Set 1D+ Detector Arras et al. [4]

Upper Body 97.5% 78.6%
Torso 97.9% 82.7%
Lower Body 96.8% 86.6%
Negative Samples 96.5% 5.6%

Figure 2.7: Performance of the benchmark HOG [36] and the proposed 1D+2D and
1D+ human classifiers tested on DontHitMe dataset.

obtained from DontHitMe-Indoor dataset. For each visual descriptor, 20 different ge-

ometric descriptors are generated synthetically from different parts of the body by

uniformly sampling in their corresponding depth images. In this way, total of 20,000
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positive and 200,000 negative multi-modal samples which merge visual and geometric

descriptors are generated from DontHitMe-Indoor dataset to train the 1D+2D detec-

tor. Also, for comparison purposes, 1D+ detector is trained only with the geometric

descriptors and the HOG human classifier [36] is trained with the visual descriptors

of this set. The accuracy of the proposed 1D+2D detector and 1D+ detector are

compared to the HOG human classifier. As in the previous test, multiple 10-fold cross-

validations are performed. During this experiment, it is ensured that the test fold and

training folds include the samples obtained from different humans. In this way, testing

of the geometric and visual descriptors obtained from the same positive samples used

in training are prevented. The ROC curves of this experiment can be seen in Fig. 2.7.

The 1D+2D detector and 1D+ detector perform significantly better than the visual

only detector. Sample detections of the 1D+2D multi-modal human detector from

DontHitMe-Indoor dataset can be seen in Fig. 2.9.

The proposed classifiers are tested with 600 labeled ground truth images of

DontHitMe-Night dataset to quantify the performance of the classifiers under severe

illumination conditions in outdoor. In this experiment, the classifiers trained in the

previous experiment are applied on the night dataset. No new classifier is trained by

using DontHitMe-Night and no synthetic range scans are generated from the depth

images of this dataset. The tested geometric human descriptors are obtained only

from the recorded LIDAR scans. The ROC curves of the 1D+2D, 1D+, and [36]

detectors are displayed in Fig. 2.8. It can be seen that the HOG descriptor is not

enough to represent the human under insufficient lighting and at night times. Our

single-modal human descriptor achieved better accuracy than the HOG descriptor.

Fusing the visual and geometric cues in a joint feature vector helped to improve the

performance; 1D+2D detector outperforms consistently the other alternatives. Sample

results of the 1D+2D multi-modal human detector that are missed by the HOG based

SVM-RBF [2] but accurately detected by the 1D+2D in DontHitMe-Night dataset can

be seen in Fig. 2.10

Since the geometric descriptor is obtained from LIDAR scans, 1D+2D detector
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is more capable of handling image motion blur than the HOG classifier under low-light

imaging conditions. Such motion blur examples (at the foot level of the pedestrians)

can be seen in Fig. 2.9.

Note that, since it is accurate and computationally feasible at the same time,

we compare against the HOG detector that uses SVM-RBF [36] for the most objective

evaluations. There are other visual features that can generate higher detection results.

Yet, such methods have prohibitively high computational loads for most practical ap-

plications.

2.4.1 Computational Load

A 64x128 detection window size was chosen for both the HOG and the proposed

1D+2D detector in the experiments. The dimension, m, of geometric feature f 1D is set

to 40. The visual feature, f 2D, has the dimension of 3780. We used a machine which

has 32GB RAM and Intel i7-2760QM quad processor to train and test the classifiers.

The classifiers are implemented in native C++ language of Visual Studio 2010 Pro.

The training phase of the 1D+2D detector consumed the largest memory among the

classifiers in the second experiment since it requires 220,000 descriptors to fit into 29GB

RAM, which took ∼5 hours.

The computational time and accuracies of the classifiers for DontHitMe-Night

dataset experiment are compared as can be seen in Table 2.2. The average processing

time of a 640×480 scale-space image (10,000 detection windows) by the benchmark

HOG classifier is about 0.6 second. At 95% true detection rate, false alarm rate of

it is 86%, whereas the false alarm rate of the 1D+2D detector is 0 on the tested

dataset. Since the search space of the 1D+2D detector is reduced efficiently by the

factors explained above, its average processing time is just 0.05 second. The proposed

geometric descriptor has much less dimensions in comparison to other descriptors and

it is easy to compute. Thus, 1D+ detector was be able to run at 0.0002 second per

scan in the same experiment.
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Table 2.2: Average running time and False Alarm Rate (at 95% True Detection Rate)
of different classifiers for DontHitMe-Night dataset.

Classifier Time (in sec) FAR at 0.95 TDR

HOG [36] 0.6 86%
1D+ Detector 0.0002 0.5%
1D+2D Detector 0.05 0%

Figure 2.8: ROC curves of the classifiers for DontHitMe-Night dataset.

2.5 Conclusion

In this chapter, an accurate and computationally very fast multi-modal human

detector is presented. This 1D+2D detector combines 1D range scan and 2D image
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information within a SVM-RBF framework. Unlike the existing approaches, the pro-

posed 1D+2D detector does not make any restrictive assumptions on the range scan

positions, thus this unconstrained detector is applicable to a wide range of real-life

detection tasks. Also, a range scan only version, 1D+, of the detector is discussed.

Extensive experiments demonstrate that the 1D+2D detector works robustly

under challenging imaging conditions and achieves several orders of magnitude per-

formance improvement (99% true detection at 0.5% false alarm rate in comparison to

54% true detection at 0.5% same false alarm rate on the benchmark) while reducing

the computational load drastically (from 0.6 sec to 0.05 sec).
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Figure 2.9: Sample detections of the 1D+2D multi-modal human detector from
DontHitMe-Indoor dataset. Please check Appendix A for the details
of the image modifications exist in this figure.
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Figure 2.10: Sample results of the 1D+2D multi-modal human detector that were
missed by the HOG based SVM-RBF [36] but accurately detected by
the 1D+2D in DontHitMe-Night dataset.
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Chapter 3

BACKGROUND ABOUT GRAPH CUTS

Graph cut techniques have taken considerably attention as an energy minimiza-

tion method in the last decade, because of the fact that graph cuts produce locally

optimal solutions for some low level vision problem, such as stereo, image restoration

and segmentation. Its one of the first appearance in the computer vision field became

in 1999 by Boykov and et al. described in [21]. Later on, it is extended an explained

in more details by [16] and [17].

Graph cuts aims to convert low level computer vision problems, such as stereo

[92] [83] [28] [196], image restoration [93] [95] and segmentation to a labeling problem

or can be used to solve Markov Random Fields [90]. Every pixel p ε P in the image

is assigned to a label l from a set of labels L. The meaning of a label set, L, varies

from one problem to another. It might consist of possible disparities for the stereo,

intensities for the image restoration, and the parts of different objects for the image

segmentation problems. In these problems, the purpose is to find a labeling f which

assigns a label l ε L to every pixel p ε P in the image.

A labeling problem can be defined in terms of an energy function. The label

assignment of pixels f is obtained by minimizing the energy functions. The energy

function that creates a labeling f usually includes two components. It is formulated as

the following:

E(f) = EData(f) + λESmooth(f) (3.1)

EData(f) is called as Data term. It describes the distance between the labeling

f and the observed data. In other words, it measures the dissimilarity between the
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labeling f and the observed data. λ, called as regularization parameter, is the relative

weight between the Data and Smoothness terms. Data term can be written as

EData(f) =
∑
pεP

Dp(fp), (3.2)

where Dp is the distance of a given pixel p to the observed data.

Observed data is a common phenomenon used in many of the classification

algorithms. One might think that if the observed data is not incorporated into the

graph cut formulation in a special way, what makes the graph cuts different than any

other simple classification method? The answer lies in the second term of E(f) which

is ESmooth(f). This term makes the graph cuts a unique framework. It formulates the

disagreement between two pixels which are assigned to the same label.

Computer vision researchers need the methods which are more gentle and pro-

duce accurate results in the borders of the objects for image segmentation, stereo or

restoration problems. Therefore, smoothness term is so important especially in the

object boundaries. In some energy minimization approaches such as [60] and [177],

the smoothness between the pixels are assumed fixed in the entire image, so they pro-

duce poor results in the border or edges. The energy functions that do not use fixed

smoothness do not show this problem and called as discontinuity preserving functions.

Some discontinuity preserving functions are described in [43], [100] and [180]. However

their common problem is that they have many local minimas. Also, solving them are

NP-hard problems, so they require very high computational time. For example, one

way of solving this problem is by simulated annealing. However, it requires enormous

time for a large set of labels. By moving just one pixel p from one label set to another,

as in the simulated annealing, cannot be practical and fast enough.

[16] and [17] propose an algorithm which assigns a label to each pixel in the

image where the final labeling is piecewise smooth and consistent with the observed

data. Unlike the simulated annealing, this approach allows moving a group of pixels

from one labeling to another, this move is called as a large move. At each iteration of

the algorithm, a group of pixels are moved to a labeling until the energy functions is
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no more minimized. In each iteration step, the energy is minimized by constructing

a graph and applying a max flow min cut algorithm. Min cut value of the edges in

the graph represents the formulated energy function of the problem. After a set of

iterations, the energy is minimized locally. Since it is based on the max flow min cut

algorithm, this algorithm is an approximation method. There is no guarantee that it

produces the global optimal solution. However, the local optimal solution is enough

for the low level vision problems most of the time. The energy is usually minimized

by two-three iterations in the graph cut framework, so the algorithm runs in close to

linear time.

Graph cut framework cannot minimize all kind of energy functions. There are

some properties which must be conveyed by the functions to be minimized by graph

cuts. These properties are defined and explained in detail by [91] and [94]. They deal

with the functions which include pair-wise and triple-wise pixel interactions. Then,

k-wise pixel interactions are examined by [49]. These publications help the vision

researchers to understand what can be solved by the graph cut based algorithms.

Min-Cut/Max-Flow algorithm is the heart of the graph cuts algorithm described

in [16] and [17]. Each iteration minimizes the energy by performing a cut in the

graph. Therefore, the speed of a cut directly affects the computational performance

of the graph cuts. [15] and [20] compare and analyze available min-cut/max-flow

algorithms, such as based on ”push-relabel” and ”augmenting paths” methods. Also,

a new min-cut/max-flow algorithm is proposed which performs better than other the

other methods in their benchmark sets which consist of image restoration, stereo and

segmentation problems. This new approach runs close to near real time.

Recently, a new approach based on graph cuts has been developed by Delong

and etc [38] [40]. In addition to Data and Smoothness terms of graph cuts, it introduces

a new term, called as Label Cost. It penalizes the solution based on the set of labels

that appear in it. It can be considered as penalizing the number of labels in the final

labeling of the pixels. Its one of the most useful application area in computer vision is

multi-model fitting. In this direction, it is a solution like classical algorithms, K-Means
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and expectation maximization (EM).

The following sections discuss about the previous work of graph cut and its

current state of art applications in computer vision.

3.1 Graph Cut Segmentation and Refinement

One of the main application areas of the graph cut in computer vision is to

segment an object in a given image. The graph cut object segmentation algorithm

described in [14] and [13] is an image segmentation version of the graph cut method

explained in [17]. In this method, the energy function that is minimized by the cut

consists of data and smoothness terms. Smoothness term sets the interaction energy

between the pixels. Data term defines how a pixel fits to a given model. The relative

influence between these two terms is set by a constant in the formulation. The energy

function is minimized by the method in [17] to obtain the desired object.

Graph cut segmentation algorithm requires two observed data models, called

as object and background models. Graph cut doesn’t have an implicit mechanism

to investigate the models by itself. These models need to be given to graph cut to

initialize the method. There are several ways to obtain these models. They can be

provided by a user with an interactive tool, or produced by other algorithms as in [86],

[41] and [112]. [86] uses an algorithm that scores color contrast differences between the

regions, [41] uses motion detection and [112] measures a superpixel based saliency to

feed back/foreground models of the graph cut. The quality of the model descriptors

directly affects the segmentation accuracy of the cut, so they have to be obtained

carefully.

Some object segmentation or tracking techniques produce a rough object seg-

mentation, or low dimensional representation of the object in the image. These rep-

resentations are necessarily approximate, and thus can miss important border details.

Retrieving exact borders of the objects might be necessary for some applications. In

addition to object segmentation purpose of graph cut, it can also be used to refine

object boundaries from a given rough estimation as described in [86] and [87].
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A method which is more sensitive on the distinct border of the objects and

incorporate geometric interactions on the borders is proposed in [39]. This method

still cut the graph via an approximation solution, but it produces better results if the

objects have thin layers. Mixture models do not carry the spatial distribution of the

colors in their structure. However, this approach considers the spatial distribution of

the colors within any object by adding extra terms into the graph cut equation.

An extension to the graph cut method [21] which employs truncated convex

priors is explained in [188]. The improvement in this approach allows more accurate

answers for the multi label energy minimizations. Standard graph cut method presents

[21] restricted two category label movements. However, [21] provides a new range of

moves which act on a large set of labels more than two.

3.1.1 Interactive Graph Cut

Obtaining the initial fore/background models from the users with the help of

an interactive tool is very popular and first introduced by [18], [14], and [19]. Then,

the following works [50] and [10] also choose to interact with the users before running

the graph cut algorithm. In these methods, first the user draws some areas in the

background and the object. The models are retrieved from the user drawn areas.

Then the graph is constructed and cut. In this way, the user explicitly defines what

the background and object will look like. After the object is segmented, the user can

rectify the object boundaries with some additional interactions. [37] requires few user

interactions and in addition it utilizes from the shape priors. Some other applications

of graph cut method which require user interaction are explained in [144], [102], [125].

The graph cut algorithm described in [157], called as GrabCut, is another in-

teractive graph cut technique. It extends the regular graph cut technique in several

ways. First, the segmentation is performed on a given initial trimap T. The pixels are

labeled as TB for background pixels, TF for foreground pixels and TU for the pixels

whose labels will be determined byGrabCut. Instead of one shot regular graph cut

algorithm, iterative version of the graph cut optimization is combined with Gaussian
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Mixture Models of background and foreground regions. After each iteration of Grab-

Cut, a border matting algorithm is performed around the object boundary and the

colors of foreground pixels.

Two phase interactive segmentation approach is explained for touching neuronal

structures from electron micro graphs in [73]. In this method, the structures are first

under-segmented. As the result of under-segmentation, the interested objects touch

each other. The correction is made with the help of the user inputs.

The usage of discriminative Gaussian mixtures to boost the performance of the

graph cut is analyzed in [198]. This method takes its initial seed models from the user

interactively. Color distribution, texture and spatial information among the pixels are

employed in the graph weights. This work claims that it produces better segmentation

results for the texture-rich images.

Active contour models and graph cut minimization method are combined by

[203]. This method allows user interaction to correct the first generated result. It can

provide more global result by jumping over the local minima and smoothed contours

can be obtained via the continuity preserving structure of the graph cut.

3.1.2 Iterative Graph Cut

Graph cut segmentation method requires to be given the object and background

models explicitly. All the weights of the graph are set once and then a cut performed

to obtain the objects. However, in some cases it is necessary to update the models to

achieve converged final object borders. Iterative graph cut is one way in the literature

to obtain more reliable and robust segmentation results. GrabCut [157] is one of the

famous iterative graph cut techniques.

[126] describes an iterative graph cut image segmentation method. It tries to

produce optimal solutions with a stepwise way by starting from a global segmenta-

tion and moving to the final local segmentation iteratively. Gaussian Mixture Models

(GMMs) defines the models in their technique. At each iteration, multi scale smooth

operation is applied and GMMs of the fore/background are updated at each iteration.
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The iterative approach explained [138] differs than [126] in some ways. Firstly,

[138] constructs the graph not in the pixel level but in the superpixel level. It means

that each node in the graph represents a superpixel. Mean-shift algorithm is applied

to cluster the pixels, and to obtain the superpixels. At each iteration of the graph cut,

not all nodes are added to the graph. Instead, only the neighbor nodes to the object

region are joined in the graph structure.

The algorithm in [126] is extended to segment spatio-temporal volumes in the

videos [127]. The objects that move fast may be divided into different volumes, so it

is not optimal to build a graph by only adding image volumes. Therefore, a new edge

types are defined in addition to regular edges in standard graph. These new edges are

formulated as new terms in the energy function. Then, the energy is minimized in the

same way as explained citeNagahashi07.

Iterative graph cuts, in addition to object segmentation problem, are also de-

veloped for the stereo matching [28]. This method produces a dense disparity map

for a given an estimated sparse disparity map. It first applies mean shift filtering in

the color-disparity space. Then, a cut in constructed graph of the disparities are per-

formed. Filtering and applying graph cut continue until it converges. This method is

robust and reliable on discontinues boundaries.

3.1.3 Graph Cut with Priors

Standard Graph cut technique is capable of capturing areas similar to object of

interest. As an addition to Graph cut method, [109][110] introduces the idea of using

a distance penalty on pixels based upon the distance from the region of interest to bias

the segmentation to remain in its region of interest area.

A shape prior which can be incorporated into the graph cut energy functions

and for the convex objects is introduced in [189]. It is called as Star Shape Prior

because of its suitability only for the convex shape objects. A user selected point or

points inside of the object must be supplied to the method. The assumption of this

approach is that any two points on a line which passes along the user selected point are
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highly possible to stay in the object. However, this assumption tries to be balanced

with the Smoothness term of the graph cut algorithm.

Graph cut has some shortcomings to segment thin elongated objects due to

shrinking bias. A connectivity prior is described to place into the graph cut technique

is described in [193]. Dijkstra’s famous shortest path algorithm is formulated as the

connectivity constraint. The user inputs are considered as the seed points for new

connectivity prior term in the graph cut energy. More accurate results are achieved in

the segmentation of thin objects.

Learned shape models are also can be incorporated into the grap cut as the

priors. [111] introduces a learned nonlinear shape model to segment the objects more

accurate with the graph cut. The method starts with the training of the binary shapes

of the object. Principal Component Analysis PCA computes the shape models. These

shape priors are defined as a term in the energy function of the graph cut. Then, the

energy function is minimized by graph cut iteratively. This method does not have any

restriction on the shape types. A shape prior, based on the discrete version of the

shape distance for the level sets framework, is defined and employed into the graph

cut by [197]. In this work, object overlaps are handled by the multiphase graph cut.

Multiple shape priors can be embedded into the graph framework.

3.1.4 Cues/Features in Graph Cut

Scale Invariant Feature Transform SIFT is a powerful feature to recognize ob-

jects in the given images. The method proposed in [175] combines SIFT features and

graph cut framework to recognize and segment the objects at the same time. An object

in the image first recognized by voting the SIFT points. Then the recognized SIFT

locations are seeded to graph cut to segment the entire object. The system works fully

automatic.

[173] explains a graph cut based method which combines the color information

and 3D position features of the points in its energy function. In this way, multiple

cues are incorporated into the algorithm to improve the segmentation accuracy. Unlike
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in the image segmentation type of graph cut algorithms, the graph which will be

cut is constructed in 3 dimensional space and weights are assigned according to the

interactions between the nodes. Using all 3-D points in the graph is computationally

expensive, so it firstly forms a surface mesh by applying a Union-Find algorithm to

reduce the computation time in the cut process. After the mesh is constructed in 3-

D, the normals of the patches are calculated and used in the weighting of the graph.

Finally, for the given back/foreground models the graph is cut and the segmentation

is produced.

A graph cut based for image and video texture synthesis algorithm is proposed

in [96]. In this algorithm, a small patch of the texture which is desired to be augmented

and enlarged is provided to the graph cut. A graph which will output syn-texture is

constructed in a way that each node represents a pixel in the output texture. The

interactions between the nodes are set according to the neighborhood of the input

texture pixels. The constructed new graph is solved by the standard graph cut method.

Another graph cut based approach which uses texture as a feature to segment the tree-

like structures in the medical images is explained in [132].

Superpixels and supervoxels are commonly used in the object segmentation,

tracking and recognition applications. An energy function which encourages producing

regular superpixels is formed in [190]. This energy is minimized by graph cut frame-

work. First advantage of this method is that accurate boundaries can be achieved.

Also, it is computationally efficient and and applicable to produce 3D supervoxels.

3.1.5 Decreasing the Computational Time

Some applications may require close real time computational time. One of these

kinds of applications can be object tracking methods. [89] describes a method to reduce

the computational time of the graph cut segmentation between two consecutive frames.

It keeps track of the pixels in the image if their location changes from one frame to

another. The graph is constructed according to the location changes, and the weights

of edges are updated only if their weights are changed in the next frame. In this way,
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the graph cut algorithm is not run for all nodes in the graph, but it is run only for the

region of the interest.

Another way to decrease the computational time of the graph cut method is

that to run it on a different hardware architecture. Graph cut algorithm is suitable

to implement and run it on GPU. Some GPU versions of graph cut is available in the

market [194]. Up to 10 times better speed might be achieved with these type of the

implementations.

A novel heuristics method to solve the graph cut energy function is explained

in [103]. This method is built on top of standard graph cut technique, but applies a

heuristic to produce the result faster by using less memory. Its results are nearly same

as standard graph cut algorithm.

3.2 Graph Cut Tracking

Graph cut has not taken so much attention in the object tracking field as in

the segmentation area. This is mostly because of its nature which produces globally

optimally solutions and intend to catch regions similar to the tracked object. Since

some background region might show similar features of the object, no one wants those

regions to be tracked by the algorithm. Even though its nature that produce globally

optimal solutions is seen as an disadvantage of graph cut, I believe in that this feature

of graph cut can be turned into an advantage to track objects in certain scenarios. For

example, abrupt changes in the location of the objects over the tracking process can

be recovered by the graph cut. Or it might be an alternative deformable object shape

tracker as the preliminary results are showed in [87]. Or it might form an infrastructure

for graph cut based human silhouette trackers. Since graph cut provides point-wise

object tracking, the review of current graph cut based object trackers are left in Chapter

6.1. More details about graph cut tracking methods can be found in that Chapter.
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3.3 Parameter Adjustment in Graph Cut Formulation

The energy functions that can be solved by graph cut include more than one

term. For example, as described in equation 3.1, a typical graph cut energy function

consists of two terms, Data and Smoothness. The weight between them is set by a

regularization parameter, λ. In this simplest form of the graph cut energy function, a

value to must be assigned to the parameter λ. The value of this parameter plays so

important role in the quality of the result produced by the graph cut. If we consider it

in the usage of the image segmentation problem, setting the value of λ bigger than it

should be causes the graph cut to produce under-segmented results which means that

it does not capture the details of the borders of the object and some parts of the object

stay in the background region. If the λ is smaller than it should be, in that case graph

cut causes over-segmentation and yields to capture the background parts of the image

and mostly skips the details on the borders.

Each image conveys different properties, so there is no universal one acceptable

value for this regularization parameter λ which can be used to produce excellent results

in all graph cut energy formulation and segmentation problems. A value of λ that works

very well for an image might not work for another image. Therefore, in most of the

graph cut applications, λ is set manually by the user. The user follows a trial and test

way to investigate which value of the parameter produces desired results. He/she sets

a value and runs graph cut, then checks the results and decides whether the selected

value good or bad. Even though the decided value produces the desired segmentation

result for one image, the user might need to change it for another image. This way is

impractical, also wastes the time of the user.

It would be great if graph cut itself would do parameter adjustment for each

image automatically. Unfortunately, graph cut does not have such an internal mecha-

nism to handle this problem. Hence, an auxiliary method to graph cut is necessary to

solve this problem. It is open and unsolved problem in the vision community and no

much research has been conducted on this problem.
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One of the first attempt was by Peng and Veksler in [137] to adjust automati-

cally the regularization parameter of graph cut for each different image. Their method

is based on the Adaboost learning algorithm. A set of images are segmented by ap-

plying graph cut with different lambda parameters changing from 2 to 74 with step

size of 8. A group of segmentation results are obtained for each image in the set.

These segmentations are evaluated and labeled as ”good or ”bad” by humans. An

segmentation result is associated with a feature vector. This feature vector contains

intra and inter object/background properties. For example, intensity contrast inside

and outside of the object near the borders are measured, difference in the textures of

object and background is calculated, the corners in the boundaries are counted and

added to the feature vector which describes the segmentation quality for that λ value

of performed graph cut. Adaboost learning algorithm is trained with the feature vec-

tors and segmentation quality labels retrieved from humans. This trained Adaboost is

used to evaluate a segmentation result of a graph cut. To select the best regularization

parameter for an image in the run time, graph cut is performed for different λ’s for the

desired image. Then each segmentation quality is asked to Adaboost classifier. The

highest value given by Adaboost is considered as the best segmentation and associated

λ is taken as the best possible regularization parameter for that image.

Besides the algorithm described in [137] proposes a method to solve graph cut

parameter adjustment problem, there are some shortcomings of their method. First of

all, running graph cut for each different λ and evaluate its segmentation, then selecting

the best segmentation is computationally expensive. It is difficult to use this method in

a real time application, because multiple graph cuts on each image takes so much time.

It would be great if it tells us the best value of the parameter before running the graph

cut multiple times. Also, determining step size of λ is another question that needs to

be answered, because if it is kept as a big number, it may produce poor results. If it

is kept as small, in this case, the computational time need increases.

The algorithm in [137] sets the regularization parameter of graph cut same for

all the pixels in the image. The approach explained in [26] aims to adjust λ for each
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pixel separately in the image. Instead of selecting a best fixed parameter as in [137],

[26] favors Smoothness term more on the borders in the image. Firstly, the method

obtains the edge maps of the given image by applying Canny edge detector at different

threshold parameter. These edge maps are used to calculate an edge probability map

of the image. Each value in the edge probability map represents how likely it is a part

of the object border. Then this map is incorporated to the graph cut to weight the

regularization parameter of each pixel. In this way, graph cut acts more aggressive on

the borders to separate the object from the background.

[26] is the first method in the literature which tries to adjust λ dynamically for

each pixel in the image. However, it still needs another parameter to set the relative

influence of Data term to Smoothness term. It is not capable of selecting different λ

for different images, so it does not solve the problem of adjusting λ dynamically for

different images. It just proposes a solution to increase the segmentation quality of the

graph cut by favoring it more on the object borders. Also, it does not include a way

to distinguish the interior object edges and the actual borders. There might be some

specific cases which can affect the performance of graph cut for the objects which have

so many interior connected edges.

The approaches in [137] and [26] are proposed only to adjust the regularization

parameter of graph cut. In some extended work of graph cuts, such as [86] [87] [135]

[110], there are more than two terms need to be combined in the energy equation that

is minimized. This is a more challenging problem than just adjusting one parameter, λ,

because each parameter in the equation need to be selected in a way that the system

produces the best result. A mechanism that finds the best parameter combination,

regardless the number of the parameters is a need. To best of my knowledge, currently

there is no work that tries to solve it. A partial unsupervised method is proposed in

[87] to adjust dynamically multiple parameters of graph cut energy function. However,

their solution is specific to their problem domain and cannot be generalized for all kind

of graph cut parameter adjustment needs. Hence, there is a still gap of solutions in this

direction of graph cuts. A supervised or unsupervised method which is incorporated
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into graph cut would increase the quality of the results produced by it.
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Chapter 4

POINT-WISE GRAPH CUT REFINEMENT AND SEGMENTATION

This chapter compares and analyzes some modified and newly developed graph

cut based techniques for the purpose of the complex object refinement and segmen-

tation. As it was introduced in the first Chapter, the Refinement process can be

considered as a transition way in order to obtain the point-wise mask of an object from

its given low dimensional representation. It is an important task if one application

needs to know detailed border of an object in the availability of its rough representa-

tion. First section focuses on modified graph cut methods to refine the low dimensional

representation of the trails for an unmanned ground vehicle. Second section introduces

a novel graph cut based method to segment and refine the complex objects under

different illumination conditions.

4.1 Modified Graph Cut for the Trail Refinement

A trail is a path or road used for hiking, walking or biking. Trails are nav-

igationally useful regions for both unmanned aerial and ground vehicles in outdoor

environment. Above-ground pipelines, rivers, canals and hiking tracks show the way

to unmanned vehicles. Structurally finding and tracking a trail in the outdoor envi-

ronment help an autonomous vehicle to drive or fly safely. Even though trail finding

and tracking is an easy task for a human, it is a challenging problem for the robots.

Vision-based trail finding and tracking can be considered as a form of road

following [141, 179, 170, 65, 187]. However, several factors make the computer vision

task particularly hard, including indistinct borders, abrupt elevation changes, dead-

ends and forks, sharply varying illumination conditions due to shadows, a wide range
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of trail materials and hence colors and textures, and the possibility of in-trail objects

such as rocks, stumps, or grass.

In [149, 150], a trail tracking algorithm was presented which takes into account

primarily the color contrast difference between the trail and neighboring image regions.

While the method works well in many instances, one shortcoming is that it maintains

a low-dimensional representation of the trail shape. In [149] the trail was represented

strictly in the image domain as a triangle (to account for perspective), and in [150]

the trail was represented as a circular arc in vehicle coordinates, projected to an omni-

directional image. These representations are necessarily approximate, and thus can

miss important border details and possible in-trail obstacles (see Fig. 4.1 for a sample

of the difference between a coarse and detailed trail segmentation).

In this section, a second stage of shape estimation is described in which the

initial, rough shape is refined automatically, without user interaction [86]. Several

basic segmentation algorithms for this purpose, specifically graph cut [13], graph cut

with distance maps [109], GrabCut [157], and a grouping method based on superpixel

over-segmentation [45] are compared and analyzed. Although the focus in this section

is on trail image data most relevant to mobile robot applications, the problem of

automatically refining segmentations is a general problem. The refinement of other set

of the objects will be discussed in the next section.

The changes made on the basic graph cut algorithms to use them as automatic

foreground extraction methods are described in the following sections.

4.1.1 Obtaining Background and Foreground Models for the Graph Cut

Standard graph cut, graph cut with distance penalty and GrabCut algorithms

require color information of background and foreground regions in the image. The

weights of the edges in the segmentation graphG of these algorithms are set by provided

background and foreground models, respectively MB and MF .

These two models may include hard constraints in addition to color information,

such as some particular pixels in the image can be set as true background or object
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(a) (b)

(c)

Figure 4.1: (a) Sample trail image; (b) Coarse ground truth overlaid; (c) Detailed
ground truth

regions as in [14]. Mback and Mobj may be obtained from the users in interactive graph

cut segmentation methods, or feeded to the algorithm as pre-prepared models by the

programmers. The models which contain the real true properties of the objects provide

better segmentation results.

In this work, MB and MF are obtained from the method explained in [149].

Briefly, it fits an estimated shape S (A triangle) to the trail in the image. S may cover

some part of the background or not include all the trail region. S is scaled downed and

S− is formed. S− provides color information to construct MF . Some background pixels

in S may generally be placed near the border of S. Scaling down process eliminates
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those pixels and yields better true trail pixels to construct MF . Simply, all pixels in

S− is used to form MF . To retrieve MB, first S is scaled up and obtained S+. All

color information of the pixels outside of S+ are employed in MB. Scaling up and

down factors are 60% and 40%, respectively. In Figure 4.4(b), the pixels colored as

green form MB, colored as red form MF , the purple triangle corresponds to the initial

estimated trail S.

The pixels in S− are set as hard constraints in the segmentation graphs of the

methods. No background pixels are provided as hard constraints to the algorithms. In

the trimap of GrabCut method, unknown label is assigned to all pixels outside of S−,

and inside of S− is considered as foreground.

4.1.2 Distance Map Construction

[109] uses a distance penalty function in its regional term. To set the penalty

function of this method, a distance map, Mapdist is constructed, and provided to the

algorithm. Initial estimated priori S of foreground includes three important cues about

the object: Color information, estimated shape of the object, and spatial information

of it in the image. To obtain color models MF and MB, color information provided

by S is used. Other two cues coming with S help to construct Mapdist. Figure 4.4(c)

shows the distance map of the given image. Instead of using object center to calculate

the distances as in [109], the closest pixel to S is used. The distance penalty map is

defined as in the following equation:

Mapdist(i) = ‖i− closestToi‖ (4.1)

where closestToi ∈ S is closest pixel of S to pixel i in the image space. ‖i− closestToi‖

is the distance between closestToi and pixel i.

4.1.3 Removing Weak Components

The raw foreground mask generated by graph cut techniques typically contains

some noisy, small and weakly-connected foreground regions, because the images can
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(a) (b)

(c)

Figure 4.2: The image, its background and object models, and its distance map.

contain a non-homogeneous color distribution inside the foreground regions and [14]

uses the color histogram to assign weights to terminal links. In order to clean up

those regions, first do morphological opening and closing are performed and found

the connected components. The largest region is taken as the final refined foreground

region.
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4.1.4 Results

The algorithm in [45] is an efficient method to over-segment an image into

self-similar regions. It defines a predicate for measuring the evidence for a bound-

ary between two regions using a graph-based representation of the image. Their seg-

mentation algorithm is constructed based on this predicate. Although this algorithm

makes greedy decisions, it produces segmentations that satisfy global properties. [152]

describes an iterative method for grouping superpixels to maximize both shape and

appearance contrast criteria which starts from initial triangular model T̂ . Superpixels

outside this initial region may be added and superpixels inside may be removed in a

non-parametric process that allows a wide effective range of shape deformations, in-

cluding the introduction of holes or outlier subregions within the trail which may be

obstacles. The refinement results of this superpixel based algorithm is also compared

to graph cut based algorithms.

The accuracy and efficiency of the algorithms are measured on a diverse set of

trail images. The experiments are run on two set of images. Set-1 consists of the im-

ages collected from several trail image sequences taken by the robot platform as it was

manually driven and Set-2 includes 30 images from the hiking trail, river and canyon

sequences taken from the web. Images of Set-2 are available through the ”Data/trail30”

link at http://nameless.cis.udel.edu. The data sets are scaled to 320 by 240 as nec-

essary. At regularly spaced intervals along trail sequences, ground-truth segmentations

are manually generated . The results are compared to the ground-truth segmentations

to quantify the accuracy of the refinement algorithms. The following polygon area

overlap formula is used to measure the overlap between the ground-truth segmentation

and the result of the refinement methods suggested by [159] :

Overlap(R1,R2) = A(R1 ∩R2)2/(A(R1)A(R2))

(4.2)

where R1 and R2 are given two regions to calculate the overlap between them.
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Algorithm Score of Set-1 Score of Set-2

Initial Models [149] 0.663 0.732
Superpixel Grouping [45] 0.740 0.713

GrabCut [157] 0.631 0.738
Graph Cut [13] 0.730 0.737

Graph Cut(With Distance Map) [109] 0.783 0.760

Table 4.1: Median overlap scores of the methods for Set-1 and Set-2. Initial models
are the low dimensional representations of the trail regions which are the
triangles by [149].

Two set of images by using each described method in the previous sections

are refined. Then, the median overlapping scores and average segmentation time of

refinement methods are calculated. Initial models are obtained from [149] for two set

of images. The overlap scores can be seen in Table 4.1. Average segmentation time

of GrabCut, superpixel, graph cut, graph cut with distance penalty methods are 2.85,

4.95, 0.17 and 0.19 seconds, respectively. Since the initial models may contain non-

trail regions or not cover entire trail region, the median overlapping score of given

initial models is not good in the first image set. Using standard graph cut method for

refinement process improves the initial segmentation quality. However, incorporating

distance map approach to graph cut performs better than standard graph cut in both

two image sets. The results of the refinement methods are shown in Figure 4.3.

4.2 Novel Graph Cut based Segmentation Method

In this section, a novel graph cut-based algorithm is explained to refine auto-

matically, without user interaction an object’s estimated borders if an initial coarse

estimate is given. The standard graph cut method [13] uses only intensity information

in its formulation. Intensity alone is often not enough to segment or track objects with

diverse appearance and shape characteristics in a large range of images. Therefore,

several changes in the standard graph cut method are made to increase the accuracy

of the refinement task. First, an adaptive color space selection mechanism is employed
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Input Models [149] Superpixel Grouping [45] GrabCut [157] Graph Cut [13] Graph Cut(Distance) [109]

Figure 4.3: Trail refinement results of the methods. Column headings show the
corresponding method names. Top 4 rows demonstrate images from Set-
1 and, the last two rows contain images from Set-2.

in the algorithm. Second, color information in the image is clustered by k-means. The

knowledge gathered from the clusters are included in the formulation of the region and
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boundary terms of the graph cut. Third, the spatial distance information is incorpo-

rated into the algorithm to constrain the final segmentation to stay around the region

of interest. The influence of the distance penalty information is adaptively set by the

algorithm.

For comparison, support vector machines (SVMs) [25] is applied to the same

problem to learn a model of the object using both appearance and spatial features,

and then to classify an image into object and non-object pixels based on the learned

model as described in [87].

Both techniques require to take a background and foreground region informa-

tion in the image, MB and MF , respectively. MF is obtained by scaling down initial

estimated shape of the object, Mt. MB is obtained by scaling up Mt and taking all the

pixels outside of that region. Mt can come from manually segmented ground truths of

the object, previous frames in the tracking procedures, or can be given by any other

algorithm. Figure 4.4(b) shows MB and MF .

4.2.1 Automatic Color Space Selection

Standard graph cut algorithm requires some feature information from the back-

ground and foreground regions in the image. Choosing these models as much as infor-

mative and distinctive helps graph cut to produce better segmentation results. Test

image sets contain high illumination changes. Working and sticking to only one color

space such as RGB does not always produce good results. In some cases it is inves-

tigated that using CIE-LAB color space gives better results. Therefore, a mechanism

to switch among the color spaces during the run time of the algorithm to improve the

accuracy is developed. Four possible color feature spaces are considered for this pur-

pose: RGB, LAB which uses three channels of CIE-LAB color space, AB which uses

only the chromaticity information, and L which uses only brightness of CIE-LAB.

To achieve self-adaptiveness among the feature spaces, the method collects some

feature statistics from the inside and outside of the object regions in run time. To do
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(a) (b)

(c)

Figure 4.4: (a) shows the image overlaid with its ground-truth polygon; (b) its
obtained background model, red colored pixels, and foreground model,
green colored pixels, for the graph cut and SVM algorithms; (c) and its
distance penalty map for the graph cut algorithm.

that, all the pixels in the image are clustered into k different labels by applying k-

means algorithm. The number of the clusters is chosen as 12, k = 12, for k-means.

K-means is separately performed four times in RGB, LAB, AB and L feature spaces

and four different cluster labels are obtained from the image. An object region color

distribution, MF , is modeled by a histogram h = (f1, . . . , fk) of the label frequencies

inside it. The background region model, MB, is formed in the same way. This allows to

capture multi-model color distribution from the inside and outside of the object. The

appearance dissimilarity, d, between MB and MF is measured by histogram distance
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function which is chi-squared metric χ2(hi, hj). This measurement is done for each

feature space and separate dissimilarity values are retrieved, dRGB is for RGB, dLAB

is for LAB, dAB is for AB and dL is for L feature spaces. The feature space which

provides the highest dissimilarity taken as the working color space of the graph cut.

In this way, more informative and distinctive foreground and background models are

provided to the graph cut. Regional term and Boundary term of the graph cut are

changed as follows:

Ri(”Object”) = −ln(
Pr(li|MF )

Pr(li|MF ) + Pr(li|MB)
) (4.3)

Ri(”Background”) = −ln(
Pr(li|MB)

Pr(li|MF ) + Pr(li|MB)
) (4.4)

B(i,j) = |Ri(”Object”)−Rj(”Object”)| (4.5)

where i and j are two neighbor pixels, li is k-means label of pixel i, MF and MB are

the histogram label frequencies of the object and the background regions in the image,

respectively.

4.2.2 Distance Penalty Map Construction and Weighting

Graph-cut method produces global segmentation and tends to catch some un-

intended regions which are similar to the desired object. However, in the tracking

procedure of the objects, the pixels labeled as the object in the current frame are

most likely will be labeled as the object again in the next frame. To incorporate

this biasing information, the pixels which are far away from the object region in the

last frame need to be penalized. This penalty information is added to the standard

graph-cut by constructing a distance penalty map as in [109]. However, the distance

penalty is weighted in a different way. Instead of guessing the location of the ob-

ject in next frame as described in [109], the dissimilarity, d, between the object and

background regions is chosen as a criteria to weight the distance penalty information
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adaptively. In this weighting technique, if the dissimilarity, d, is high between the re-

gions, graph-cut is forced more to stay around the object location which is segmented

in the last frame. Specifically, if MF and MB are similar to each other, graph cut

does not go to go far away from the last position of the object and look for more

pixels to add to the object region, The distance map of the image is constructed as:

Mapdist(i) = ‖i − closestToi‖, where closestToi is the closest pixel of the object to

pixel i in the image space. ‖i− closestToi‖ is the distance between closestToi and

pixel i. Figure 4.4(c) shows the distance penalty map of a given image. The distance

penalty function is added to regional term of the standard graph cut algorithm in the

following way:

Ri(”Object”) = Pr(Pi|O) + β(α(dcs)Mapdist(i)) (4.6)

where Pr(Pi|O) is the penalty of adding pixel i to the object region. β is a constant

term to set the relative influence. α(.) is the negative log-likelihood function to weight

the distance penalty adaptively. dcs is the smallest dissimilarity value returned by

chi-squared metric among all feature color spaces considered in the algorithm.

4.2.3 Results

The proposed algorithm was tested with 3 different data-sets. The Trail dataset

from [150] consists of 17,358 frames of video taken along a hiking/mountain biking trail

in a mixture of field and forested terrain. The Head dataset is a short 383-frame clip

from a standard video compression benchmark in which a person’s head bobs around

in the back of a car in [62]. Finally, Hand is a 5-minute (5,616-frame) video recorded

outside our lab of a hand waving and gesturing in front of a complex background.

Ground-truth object segmentations are manually generated for about 5− 10% of each

datasets at regular intervals. The same area overlap formula is used suggested by [159]

to measure the accuracies between the ground-truth segmentations and the results.

The experiment is performed for the images which have ground-truths. In or-

der to see the performance of adding distance penalty to the graph cut, the distance
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Method Name Trail Hand Head

Standard GC [13] 0.55 0.79 0.52
Color GC 0.69 0.95 0.84
ColorD GC 0.79 0.97 0.89
SVMs 0.76 0.95 0.86

Table 4.2: Median overlap scores of the single frame image segmentation results for
the data sets.

information is removed from the graph cut method, called Color GC, and applied on

the data sets. All experimented methods are initialized with the ground-truth seg-

mentations, so Mt is set to be the ground-truth. Table 4.2 summarizes the median

overlap scores between the methods and the ground-truth segmentations for each data

sets. Some results of this experiment are shown in Figure 4.5. As expected, adding

the color information to the standard graph cut helps to increase the accuracy of the

segmentation. Also, incorporating the distance penalty and weighting it according to

the dissimilarity between MF and MB improves the performance. The last row of Table

4.2 shows the results of SVM based method, described in [87].
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Ground-truth Graph Cut [13] Color GC ColorD GC SVM

Figure 4.5: Sample results of different refinement methods for the images whose

ground-truths are shown in left-most column. Column headings show

the method names. First two rows display the results from Trail, the

next two rows from Head, and the last two rows from Hand datasets.
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The Methods Median Overlap Score

Only RGB 0.673
Only Depth 0.62

RGB + Depth 0.671
GrabCut [157] 0.663

Table 4.3: The overlapping scores of GC-Refine and GrabCut [157] for NYU-
KinectDataset-Refine. First three rows denote the score of the test in
which the corresponding cues are incorporated in GC-Refine.

4.2.4 Results of the Household Objects

In the availability of the depth data, ColorD GC is extendable to fuse some

other other generic cues, such as the depth and normal of a point, into the refinement

process. The details of this extension is explained in Chapter 5 and this refinement

method is called as GC-Refine. Simply, k-means clustering is performed by putting

all cues to the same feature vector. GC-Refine is also experimented with a subset of

NYU-KinectDataset [128] [168]. This dataset has of 2347 unique frames including 64

different indoor environments, such as residential apartments, living rooms, bedrooms,

bathrooms and kitchens. The objects in this dataset were manually point-wise anno-

tated. It was recorded by a Kinect setup system, so the registered color and depth

images of the frames are available. The problem of refining other kinds of objects as

in NYU-KinectDataset, if their low dimensional representation is also possible. In this

case, it is assumed that their low dimensional representation is a bounding box around

the objects.

A new subset of this dataset, called as NYU-KinectDataset-Refine, is formed

by selecting 30 images which include different household objects, such as microwave,

air conditioner, flower vase, pillow, kettle and etc. The bounding boxes around the

objects are generated by leaving a certain of margin between the sides of the bounding

box and the point-wise ground truth of the objects. The objects in this dataset were

refined by GC-Refine which is explained in Chapter 5.2.1.1 by providing generated

bounding boxes and incorporating different combinations of the rgb color and depth
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of the pixels. The median overlapping scores were computed for each of the tests.

These scores can be seen in Table 4.3. The best performance achieved using only

RGB color information. Combining the depth information with the color did not help

to improve performance. This is mainly because of not employing a pre-processing

steps to obtain more representative object models for GC-Refine. Since the points just

around the object have the similar depth values, GC-Refine with the depth information

was unable to outperform the case which only utilizes from the rgb color information.

In addition, the results of GC-Refine are compared to GrabCut [157]. It was observed

that GrabCut performs slightly worse than GC-Refine. Some sample results of this

experiment with different combinations of the cues are shown in Figure 4.6.
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Input Image Only RGB Only Depth RGB + Depth GrabCut [157]

Figure 4.6: Sample results of GC-Refine and GrabCut [157] for NYU-KinectDataset-

Refine. Column headings show the used combinations of the cues for

GC-Refine.
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4.3 Conclusion

Refining the rough estimated shapes of an object provided by some other algo-

rithms is useful for the applications which require the detailed border, in other words,

non-parametric point-wise representation of an object. For example, an unmanned

ground vehicle can produce more accurate motion trajectories, if it knows exact the

detailed borders of the trail in which it drives. Therefore, on one side of this chap-

ter, the performance of several transformed methods which can refine automatically

foreground regions for the purpose of robot trail following are compared and analyzed.

Trail refinement methods are developed by making some changes on graph cut,

graph cut with distance penalty, GrabCut and super pixel segmentation algorithms.

The refinement methods require to take initial information about the foreground re-

gion. These information contain cues about the color, shape and spatial position of the

region in a given image. Initial color and shape models of the foreground and back-

ground regions by using these priori information are constructed. The performance

of the algorithms are analyzed on several long sequences with diverse appearance and

structural characteristics, and in addition to this set, with a set of trail images col-

lected from the web. Ground-truth segmentations are used to quantify performance

where available. Median overlap scores between the ground truths and the results of

the methods are computed for both of the test sets. The graph cut method which

penalizes distant points to the initial estimated trail region outperformed the other

methods in the experiments.

In order to build a refinement method which is more robust to different illu-

mination conditions and to handle other kind of complex objects, a novel graph cut

based algorithm is developed. This method has the ability of switching between dif-

ferent color spaces dynamically. It computes the most distinctive color space between

the background and foreground models of graph cut by a pre-processing step. The

working color space of graph cut is set to most distinctive color space adaptively. The

best color space is chosen among RGB, LAB, AB, and L. The pixels are clustered by

k-means algorithm before the histograms of fore/background models are formed. The
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frequencies of k-means labels are accumulated into the fore/background histograms.

In contrast to a previous graph cut method which utilizes from shape distance

penalties of the points in the image space by weighting them constantly, the proposed

method employs a dynamic weighting mechanism. According to the distances between

the models of graph cut which is computed by the color space selection step, the dis-

tance penalty map is adaptively weighted in the run time. This feature of the algorithm

provides it to be able to capture distant object points if there is high color similarity

around the object region, or it stays close to the object region if the dissimilarity is

high.

This novel method is experimented with three different datasets. One dataset

consists of 17,358 trail images recorded by an omni-directional camera in a mixture

of field and forested terrain. Another one includes 5,616 frames of a video in which a

hand is gesturing in front of a complex background. Last dataset includes 383 frames

of a human head moving in a car. The ground truths are generated for 5-10% of

three datasets to quantify of the performance the proposed method. The results are

compared to standard graph cut technique and a SVMs based refinement method.

The proposed method outperformed the compared algorithms for the results of three

datasets. Moreover, the result of the proposed method is experimented with the images

of household objects, such as air conditioner, flower case, pillow, kettle and etc. In this

case, it is assumed that a bounding box around the objects are given as the initial

rough shape estimations of the objects. The proposed method outperformed GrabCut

which is known as the best suitable method for this purpose.
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Chapter 5

REFINEMENT OF LOW DIMENSIONAL HUMAN SHAPE
REPRESENTATION

There are many benefits of detecting and tracking the humans around an intelli-

gent system. For example, an autonomous car driving on the streets requires to locate

the pedestrians not to hit them. Knowing the exact position of the humans around

itself provide useful information to the motion planner of the car. Since a human is a

special type of obstacle, the motion planner might put some constraints to give more

importance of avoiding from the humans while calculating the trajectories. A given

rough shape estimation of the human in the low dimensional space, such as a bounding

box, to the motion planner is enough in many conditions to produce human hit-free

motion plans.

However, an autonomous car might need to know more than just a rough shape

estimation of a human in some cases. For example, if there is a police officer at the

intersection of a road, his/her gestures mean important traffic commands for the vehi-

cle. In order to understand these commands, instead of a bounding box representation

of the police officer, a point-wise representation which provides exact detailed borders

of him/her is more desirable. This type of representation excludes the points which

are the non-region of interests in the scene, consequently it provides a better human

representation which is more beneficial for the method of understanding the commands

of the police officer.

Recognition of the human gesture is not only necessary for the autonomous

cars, but there are a wide range applications which might need to understand the

gesture of the people. One of the them can be the applications which convert the

sign language to the written sentences for helping the handicapped people. In fact,

82



any gesture recognition application opens a gate for the human to communicate to the

machines. If a computer can understand the gesture, input devices, such as a mouse,

keyboard, and touch screen will not be required. Also, remote control of the devices

will be possible by interpreting the gestures. It can generate the home environments

in which someone can open the curtain of the room by clapping his/her hands.

Computer surveillance systems are commonly used in the airports, shopping

centers, buildings, and the roads for the security purposes. Detecting and tracking

the people is some functions of these system. More importantly, their one of the

other functions is understanding the behaviors of the people which do some suspicious

activities, such as detecting of an unattended bag in which there might be a bomb.

Another purpose of the surveillance systems can be the understanding of the movements

of the old people living alone in their home. In the case of an urgent situation of their

health, the hospitals or their relatives can be informed. The applications which detect

automatically these type of the activities help the officers who monitor the scene and

save their time to do this cumbersome work. These applications inevitably need the

point-wise mask of the people in the environment.

Kinect has became so popular in last years for in-home game players. The avail-

ability of the interaction between the player and the game allows the game developers

to produce more realistic and enjoyable games. The depth camera employed in Kinect

system give the opportunity of obtaining 3D shape features of the environment. This

helps to build more accurate object perception algorithms. Better object perception

algorithms yield better understanding the commands and gestures of the human to

play the game. For example, an interactive soccer game need to know where the foot

of the human in front of the camera. Also, it should be able to track the foot to detect

the event of kicking the virtual ball. In addition to a soccer game, some other interac-

tive games, such as a baseball, tennis, and bowling need to detect and track different

parts of the human body. The detailed border of the body parts are more desirable for

these interactive games. This can be achieved by the point-wise representation of the

human body.
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Figure 5.1: A given low dimensional representation of the human which is a bounding
box in this case is refined to obtain more detailed point-wise representa-
tion.

A rough low dimensional representation of the human, such as a bounding box,

is output by some human detection and tracking algorithms, (cite these algorithms).

Even though some of these algorithms are so powerful and robust, low dimensional

representation is not enough for the applications described above. Point-wise repre-

sentation of the human is necessary for these applications. The detection of a human

in point-wise is difficult problem in different and cluttered environments. Designing

a point-wise human descriptor which can represent any point on a human is nearly

impossible because of the variance of the background. However, it is possible to uti-

lize from the low dimensional representation of the object to achieve its point-wise

representation.

A bounding box representation of the human carry some useful information

about the human. First of all, this representation guarantees that the human is inside

of this box. It is possible to start from this initial rough estimation to obtain the

exact detailed human borders. This process can be called as the refinement of the low

dimensional representation of the human. This refinement process is a transition way

of going from low dimensional to point-wise representation of the object. Its output

is a mask which includes all the points belong to the human. This mask can be given

to the applications described above as the initial input. An illustration of this process
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can be seen in Figure 5.1.

The refinement of low dimensional human representation is a challenging prob-

lem. Several reasons make refinement process difficult. Representation of the human,

in this case a bounding box, not only contains the human points but it also includes

some background points. The background in the bounding box might have similar

colors, texture or 3D geometric features. It is difficult to learn a common human color

or texture model. The background points need to be eliminated from the human color

model. Also, the human might stand in any position in the bounding box. He/she

might sit, stand, walk, open his/her arms, or bend. The camera might take the pic-

tures from any position, so it might cause the pose variance of the human and cause

the occlusion of the human body parts. These all factors make the refinement process

complicated.

Some factors make the refinement of the low dimensional human shape different

than the refinement of some complex objects, such as trail, human head and hand,

explained in Chapter 4. The first main difference can be seen in the representations of

the shapes of the objects. The provided shapes of the objects to the refinement process

in Chapter 4 have tighter bounding polygons. They usually have a few background

points, but almost everything inside of it is actual true points of the object. If the

given polygons are scaled down by a small factor, it is possible to obtain representative

models of the objects. Whereas the bounding box representation of a human is a

looser bounding polygon. It covers outside of the human in the scene. Therefore,

it has much more background points. A simple scaling process might not produce

clean and representative human models as for the complex objects in Chapter 4. Small

scaling factors of the bounding box causes including more background points, but large

scaling factor causes to loose many of the human points in the models.

In addition to using only color images in Chapter 4, the features obtained from

the depth image of the scene is going to be incorporated into the human refinement

process in this Chapter. These features are going to be the depth, the normal of the

points and also point-wise shape descriptors which are specific to the human body.
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Figure 5.2: In GrabCut [157] algorithm, a user initialize a rectangle around the object
that he wants to segment. It outputs the point-wise object mask.

5.1 Related Work

To best of my knowledge, currently there is no work exists which directly aims

to refine the low dimensional human shape representation to obtain the point-wise

mask of the human by using multi sensor data. However, GrabCut [157] can be con-

sidered as a suitable method which uses features obtained only from the color image

for this purpose. GrabCut is designed as semi-automatic segmentation algorithm. It

takes a user drawn rectangle around the object which wants to be segmented from

its surrounding background. It builds the Gaussian Mixtures Models for the object

and background by using inside and outside of the user given rectangle. Graph cut

segmentation method [16] [17] is applied iteratively. At the end of each iteration, the

result mask of graph cut is provided to the next iteration to set new fore/background

models. Border matting is performed to achieve smooth and more accurate results at

the end of each segmentation.

Humanising GrabCut [56] is a specialized version of GrabCut method which

refines the given low dimensional representation of the human in the image. This

method incorporates only color information to its refinement process by training a

classifier. Even though it utilizes from the depth data of a Kinect sensor to generate

the pixel-wise ground truths of the humans, they do not use the depth information in
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(a) (b)

Figure 5.3: Some results of Humanising GrabCut [56]. The red bounding box indi-
cates the given low dimensional shape around the human, and the cyan
drawn silhouette denotes the refinement result. The numbers on the left
top side of the images show the overlapping scores between the result
and the ground truth of that image. Since this method utilizes only from
the color information, it is obvious to see that the color similarity in the
background of (b) diminished the performance.

the refinement of the human. The authors of [56] collected their data by not moving

their setup, so they were be able to use a background subtraction method employed

in OpenNI library to obtain the ground truths. The background subtraction method

extracts the region of interest by only using the depth data of Kinect. [56] registers the

color and depth images to achieve the corresponding ground truth in the color image.

Someone can inspire from the depth image based background subtraction method

used in [56] also to refine the low dimensional human representation. However, there

are differences which make the problem of the human refinement more complicated in

our case. The main issue is that the camera position is not assumed as stationary, so

background might change from one frame to another. For example, what if the camera

setup is mounted on a moving vehicle. In that case, their method will be unable to

extract the background due to changes in the scene. Therefore, the approaches which

will be explained in the next sections do not assume that the images are provided by a

stationary camera setup. Some sample results of this method can be seen in Figure ??.
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[59] and [58] describe a spatio-temporal GrabCut based method to segment the

humans given in an image. The humans are detected by cascaded HOG classifier [36].

The faces of the humans are detected by Haar-like features [195]. The seed points

of GrabCut are initialized according to detected humans and their faces. In order to

incorporate the spatial coherence, instead of building k-means GMM color models,

a strategy which uses Mean Shift clustering is chosen to form the GMM models of

foreground and background.

The human silhouette is obtained by a bottom up approach inside a human

detection window in [115]. The window in which there is a human is divided into

blocks. A confidence value which defines that there is a part of human in that block

is assigned by HOG classifier [36]. A canny edge detector is run on the window and

the strong contour segments are achieved. A graph whose vertices are the contour

segments is constructed. The weights of the edges of this graph are set by a energy

function which employs the likelihood information coming from the HOG classifier,

and the spatial distance between the contours. It is assumed that the silhouette of

the human forms a cycle in this graph. The optimal cycle in this graph is found

by Dijkstra’s shortest path algorithm. Several iterations of this process ensures that

optimal cycle which represents the human in the graph is achieved, if some of the

silhouette contours are missing.

A local shape feature based human classifier is proposed in [202]. In this method,

edgelet features are used to represent the local shape information of the information.

First, a classifier detect the the region of the interest of the object. A second classifier

classify the foreground pixels around the neighborhood of the edgelet. In this way, a

cascaded detection and per-pixel object classification method is achieved. This methods

is tested with pedestrian human dataset.

The pedestrians are simultaneously detected and segmented by integrating ap-

pearance and motion cues in [161]. The contour features which employs the silhouette

information is learned from the training data. This method combines a bottom-up

and top-down approaches in a coherent manner. A Markov Random Field is formed
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to formulate the labeling problem of the contours. The edges between the vertices

are assigned according to the similarity of contours to a human contour, the spatial

distances between them. The silhouette of the human extracted by a loop closure

operation among the contours.

[146] proposes a human segmentation method from the indoor video image se-

quences. This method can be considered as a variation of background subtraction

approach. It forms a texture and color models for each pixel in the image. It re-

moves the shadows to make the algorithm more robust. This work only works for the

stationary cameras.

The label discontinuity information of neighbor pixels are not integrated in [165].

[147] describes a human limb segmentation framework based on Random Forest and

graph cuts in depth map images of videos. Random forest estimates the probability of

the pixels being a human or not. These probabilities, also can be called as confidence

scores, are carried into the building of a conditional random field graph. The unary

term of the graph is set to the confidence scores. The graph cuts is performed to assign

the labels of the pixels spatially and temporally.

A model based human segmentation approach in crowded scenes is described in

[210]. This method assumes that the camera which captures the images of the scene is

stationary. Various features, such as human shape, human height, and camera model,

are all integrated in one Bayesian framework. The solution of the system is obtained

by and efficient Markov chain Monte Carlo method.

[192] explains a human segmentation method which uses utilizes from different

human body part detectors. This approach constructs a conditional random fields

which includes pixel-wise features in the image and also high order informations about

the human. The shape prior information is incorporated to bias the segmentation

to human body shapes. High order potentials in the formulation of the conditional

random fields are defined as the segmented human body parts. Graph cuts is performed

to obtain the human segmentation.

A human segmentation algorithm which fuses the information retrieved from
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color and thermal camera is presented in [208] [209]. In this method, the background

subtraction approach is applied in both color camera and the thermal camera images.

These two sensors are registered in the same coordinate system. A Gaussian distribu-

tion models the temperature of the human. The background model of each pixel in

the color image is described by a list of codewords. Equal weights are assigned at the

fusion of these two different features to segment the human.

A body part labeling method is described in [165] [166]. This method presents

a point-wise descriptor which collects structure information around the interest point.

Structure information is obtained from the depth data of the scene. This algorithm

runs in Kinect devices nowadays.

5.2 Approaches

Several different approaches can be developed to solve the human refinement

problem if a low dimensional representation of the human shape is provided. In this

section, the methods which will be discussed take a bounding box representation of the

human as the input. It refines the bounding box, B(x,y,w,h), where x and y is the top

left point, w is the width, and h the height of the box, to obtain the detailed pixel-wise

representation of the human.

There two main types of approaches which can be followed to refine the low

dimensional representation of the human. In the first way, only the local cues inside

the provided bounding box can be used. No other prior information is incorporated.

These types of approaches are explained in Section 5.2.1. In the second way, a classifier

can be trained to incorporate some prior information only specific to the human. These

prior information can carry general shape, skin color, texture features of a different

humans. This type of the methods will be explained in Section 5.2.2.

5.2.1 Refinement Using Only Generic Cues and No-Prior Information

It is possible to develop some pixel-wise human refinement algorithms without

incorporating any prior information. In these approaches, the models that carry the
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cues about human and background are obtained from a single input image. These cues

might be the generic cues to refine or segment any object. Some methods can apply a

pre-processing step to clean as many as non-human points inside the given bounding

box to achieve more reliable foreground models. On the other hand, all points inside

the bounding box can be used to form the human model.

5.2.1.1 No Pre-processing: Refinement with Iterative Graph Cuts

The graph cut method explained in Chapter 4.2 and [87] takes a coarse estimate

of mask by initialized an user or another method. Then, this method segments the

desired object iteratively applying graph cuts.

[87] constructs the fore/background models using just the color images, no fea-

tures retrieved from 3D point-cloud of the scene are utilized. This work can be extended

easily to incorporate any other cues into the refinement process. In order to deploy the

other useful features, the size of the feature vector must be increased.

In this method, a feature vector, v = (v1, . . . , vm), is calculated for each pixels

in the image, or the points in the point cloud. m indicates the dimension of the feature

vector. All feature vectors, v’s, are clustered into k different labels by applying k-means

algorithm.

A human region feature vector, v, distribution, MH , is modeled by a histogram

h = (f1, . . . , fk) of the label frequencies inside it. The background region model, MB,

is formed in the same way. The model dissimilarity, dm, between MB and MH is

measured by histogram distance function which is chi-squared metric χ2(hi, hj). This

dissimilarity value is going be used a confidence measurement to weight another feature,

called as distance penalty, which will be employed in the graph cut and explained in

the next section.

The regional and boundary term of modified graph cut explained in Section

4.2 are recalled by stating that the object segmented in the formulation is the human

body:

Ri(”Human”) = −ln(
Pr(li|MH)

Pr(li|MH) + Pr(li|MB)
) (5.1)
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Ri(”Background”) = −ln(
Pr(li|MB)

Pr(li|MH) + Pr(li|MB)
) (5.2)

B(i,j) = |Ri(”Human)−Rj(”Human”)| (5.3)

where i and j are two neighbor pixels, li is k-means label of pixel i, MH and MB are

the histogram label frequencies of the human and the background regions in the image,

respectively.

In order to form the human model, MH , given bounding box, B(x,y,w,h) is

shrinked by a factor of Sd. All points inside the shrinked bounding box, Bsd(x1, y1, w1, h1),

are used to form the human model, MH . The points to obtain background model, MB,

is calculated first by scaling up B(x,y,w,h) and yielding a larger bounding box, BLarge.

Then all the points which are inside BLarge, but not in B(x,y,w,h) are used to form

MB. These models in a given image are shown in Figure 5.4.

Distance Penalty Map Construction and Weighting: Globally optimal

segmentations are produced by graph cut. In our problem, in addition to color, surface

normals, and depth information, it is possible to retrieve a useful information to employ

in the graph structure from provided bounding box. It is less likely that the pixels which

are far away from the center point, MidB(x, y), of the bounding box, B(x,y,w,h), are

going to belong to the human body. As explained in Section 4.2.2, this type of penalty

can be incorporated into the graph cut by constructing a distance penalty map. The

distance map is constructed as: Mapdist(i) = ‖i−MidB(x, y)‖, where point i is a pixel

in the image space. ‖i−MidB(x, y)‖ is the distance between MidB(x, y) and pixel i.

Figure 5.5 shows the distance penalty map of a given image.

The dissimilarity value between human and background models, dm, can be used

to weight the distance map, Mapdist. Weighting Mapdist with dm biases the graph cut

to include far points carefully if the dissimilarity between the models is large. The
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Figure 5.4: The human and background models provided to the modified graph cut.
The initial given bounding box is drawn as blue. Green pixels are used
to form the human model. Red pixels are for the background model.

distance penalty function formulated in Section 4.2 is brought to add into the regional

term of the graph cut algorithm :

Ri(”Human”) = Pr(Pi|O) + β(α(dm)Mapdist(i)) (5.4)

where Pr(Pi|O) is the penalty of adding pixel i to the human region. β is a constant

term to set the relative influence. α(.) is the negative log-likelihood function to weight

the distance penalty adaptively. dm is the dissimilarity value between the models.

The Cues: The feature vector, v = (v1, . . . , vm), can be formed by the cues

obtained from the color and depth images of the scene. In this algorithm, 3 different

cues are combined in v. The color information is incorporated into the feature vector,
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Figure 5.5: Right image shows the distance penalty map of given left image. Bound-
ing box is drawn as blue in the left image. The center point of the
bounding box is colored as red in the distance map.

v, simply taking 3 RGB channels of the pixels in the image. The depth value of the

corresponding point is added another dimension to v. In addition to color and depth

information of a pixel, local surface information of a point can be included in v. In

order to put this information, the depth image is first converted to the 3D point cloud.

Then, the normal of each point, pn = (nx, ny, nz), is estimated in the point cloud. The

neighborhood search of the points is performed by building a FLANN-based Kd-tree

[124] to reduce the computational time. All dimensions of the pn is added to the final

feature vector, v.

Figure 5.6 displays the incorporated cues for some sample images. Figure 5.6(a)

shows the original color images, Figure 5.6(b) displays their corresponding depth im-

ages. Depth images are colored in blue shade to make more visible and to show invalid

depth points as black for the illustration purpose. Dark blue points are more close

to the camera location and lighter blue points are far from the camera. The black

colored points are the locations where there is no depth information is provided by the

infrared camera. One of the reasons is that some points in the scene are out of range

of the infrared camera. For example, some far background points do not have depth

information. Also, at some points where there are strong sun-light on shinny surface,
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such as on the left side of the image in the third row of Figure 5.6, the infrared camera

is unable to provide depth information. In addition, because of the geometry of the

human hair, or type of the clothes which do not reflect well the infrared lights, the

depth is not available for some points on the human body.

The normals of the scene points are showed in Figure 5.6(c). In order to illustrate

the normals, pn = (nx, ny, nz), in a colored image format, each dimension of the normal,

pn, whose range is between [-1, 1] is transformed to the range of [0, 255]. In this way,

it becomes possible to visualize point normals in the image format. nx, ny, and nz

dimensions of a point normal correspond to the red, green and blue channels of the

image, respectively. The normals are not computed where there is no depth information

is available.

The refinement approach described in this section is called as GC-Refine for

further references.
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(a) (b) (c)

Figure 5.6: The illustration of the cues for sample images. Please see the text, Section

5.2.1.1, for the details.
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5.2.1.2 Pre-processing: Ground Plane Fitting and Background Elimina-

tion

GC-Refine method described in the previous section builds the human and back-

ground models by scaling provided bounding box, B(x,y,w,h). Scaling of this repre-

sentation is not the best approach to construct robust models. Using a small scale

factor causes to include some background points into the human model. Or choosing

a large scale factor can eliminate some of the human body points. In order to reduce

the number of the background pixels in the human model, some pre-processing steps

can be applied.

Removing Ground Plane Points: B(x,y,w,h) contains some ground plane

points at the foot level of the people in the scene. Refining these points are problematic

in several perspectives. They have almost similar spatial distances to the middle point

of the bounding box, B(x,y,w,h), as the human foot points, so using the distance map

approach explained in the previous section can not entirely solve this problem. Also,

the normals of some points on the human foot or shoe, and the ground points can

be similar which are sticking up. Also, they have same depth distances. Therefore,

segmenting the points at the foot level of the human body requires special attention.

The ground plane can be estimated in the point cloud of the scene by assuming

that the ground plane points stays under a certain level of the height, Gh. The points

which support a sample consensus plane model under Gh are segmented as the ground

plane. Not only the points inside B(x,y,w,h), but all of the points in the scene are used

to estimate the ground plane. In this way, more inliers allow better segmentation of

the ground plane. The estimated ground plane points are excluded from the bounding

box, B(x,y,w,h). For a given image, the estimated ground plane in its 3D point cloud

and excluded points from the human model, MH , are displayed in Figure 5.7.

Extracting region of interest: Elimination of ground plane points from the

human model, MH , cleans non region of interest at the foot level of the humans.

However, there might be some background points higher level than ground which are

just behind the human. These points can belong to a wall, an object, or another
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(a) (b)

(c)

Figure 5.7: Ground Plane subtraction from the models. (a) shows a given image
with a bounding box around a human, (b) displays its corresponding 3D
point cloud with registered color of the points and the estimated ground
plane. An elevated view of the scene from above in PCL viewer shows the
estimated ground plane points colored as red. (c) is the final human and
background models after excluding the ground plane points. All green
colored points forms the human model, MH , and all the points in red
area build the background model, MB.

human. Therefore, removing these points from the human model helps to achieve

more accurate refinement results. To remove these points, first it is assumed that

a human has a maximum radius of dH . A slice of region which is perpendicular to

the ground and whose width is dH is searched to extract the region of interest within

B(x,y,w,h). The slice which holds the maximum number of points is selected to form
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MH . These points can be estimated by a Random Sample Consensus procedure as

outlined in Algorithm 2.

Algorithm 2 Extracting ROI

Inputs: Pts = (x1, y1, z1), ..., (xn, yn, zn) points in B(x, y, w, h), dH
Output: RegionPts = (x1, y1, z1), ..., (xm, ym, zm), the inlier points

1: * Compute L, the iteration number of RANSAC
2: for k=1, ... , L
3: * Choose a random point, pk = (xk, yk, zk), in Pts
4: * Set, cin ← 0, the number of inliers
5: * Set, ptsin ← empty, the inlier points
6: for each pi = (xi, yi, zi), in Pts
7: * Calculate the distance, dz = |zk − zi|, between pk and pi along z axes
8: if dz < dH
9: * Add pi to ptsin

10: * cin ← cin + 1, increment the number of the inliers
11: if cin > cmax
12: * RegionPts← ptsin, copy inliers to the return list
13: * cmax ← cin, set max number of the inliers
14: * pmax ← i, set max index

Figure 5.8 shows the extracted region of interest from given depth image in

which ground plane points are already labeled by Algorithm 2. After removing ground

plane points and extracting the region of interest from B(x,y,w,h), the rest of the points

inside B(x,y,w,h) are used to form the human model, MH . The background model is

formed by the same process described in the previous section. The refinement task is

done again by GC-Refine method, but in this case applying the pre-processing steps

described in this section. Therefore, this approach can be called as GC-Refine-Pre.

5.2.2 Point-wise Classifier

All methods explained in the previous section form the human and background

models, MH and MB by some pre-processing steps based on the bottom-up approaches.

These pre-processing steps might cause to build non reliable models that yield poor

refinement results. Instead of estimating the models specific to only given image, it is

possible to learn some point-wise features of the human body by training a classifier.
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(a) (b)

(c) (d)

Figure 5.8: Extracting the region of interest to form the human model, HM . (a)
shows a given image with a bounding box around a human, (b) shows
the depth image in which the white points correspond to the estimated
ground plane. (c) displays the extracted human body points which are
colored as green after applying Algorithm 2. Final human model points,
colored as green, and background model points, colored as red, can be
seen in (d).

These point-wise features are going to be specific to the human rather than a generic

spatial cues. One of the main advantage of building such a classifier is that the common

cues belong to a human can be incorporated into the refinement procedure. The

following sections describe the cues which are obtained to form the point-wise shape

descriptor of human body and the details of building the classifier.
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5.2.2.1 Point-wise Shape Descriptor

The proposed point-wise shape descriptor, fs, utilizes from the 3D point cloud

data of the scene. It is obtained by the following procedure:

1) Normals: A cue about the local shape information at the surrounding of a

point, pi, can be encoded in the descriptor, fs, by calculating the normal of pi, ηi. It is

computed for all three dimensions of the point cloud space, so it includes three values

for three directions, ηi = (ηx, ηy, ηz).

2) Vectorial Spatial Distance: First, the middle point, midB = (midx,midy,midz),

of the bounding box, B(x,y,w,h), is calculated as formulated in the following equations:

mid2D
B = (x+ w/2, y + h/2) (5.5)

midB ← T (mid2D
B ) (5.6)

where T is the function which gives the corresponding 3D point of a pixel in

the image. The vectorial distance relative to the middle point of B(x,y,w,h), ∆v =

(∆x,∆y,∆z), is computed for the point, pi = (px, py, pz). This computation can be

formulated as:

∆v = (px −midx, py −midy, pz −midz) (5.7)

3) Geodesic Distance: As mentioned in [140], geodesic distance between two

points on the human body is constant at different poses. This cue is incorporated into

our descriptor, fs. The relative geodesic distance, GDi, to the middle point, midB,

of a point, pi, is computed by Dijkstra’s Shortest Path Algorithm. The image of the

scene is converted to a graph, G(V,E), where V is the graph nodes, and E is the edges

between the nodes. Each point, i, in the image is represented as a node in graph,

G(V,E). The neighbors of the each node in the graph is restricted to 4 pixel neighbors

from the image. The edge weight, wij, between two points, i and j, is set to the
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Euclidean distance between pi and pj in the corresponding point cloud of the scene as

in Equation 5.8.

Each point, pi, in the point cloud is represented as a node in graph, G(V,E).

The edge weight, wij, between two points, pi and pj, is set to the Euclidean distance

between pi and pj as in Equation 5.8.

wij =
√
|pix − pjx|

2 + |piy − pjy |
2 + |piz − pjz |

2 (5.8)

If the there is no depth data is available for the neighbor, the edge weight, wij

is assigned to very large distance. Some sample geodesic distance map for the given

images can be seen in Figure 5.9. For the illustration purpose, these maps are colored

in a way that same intensity values in two different images correspond to the same

Euclidean distance value.

As it can be realized that the geodesic distance map contains more accurate

distance information than the distance map approach which is computed in 2D image

space explained in Section 5.2.1.1 and its example is showed in Figure 5.5. Therefore, it

is more representative. Also, it is not possible to see a sphere effect around the middle

point of the bounding box in the geodesic distance map. Yet, this can be seen if it is

calculated in the image space. However, the advantage of computing the distance map

in the image space is that it is computationally so fast. There is no need to run an

computationally expensive shortest path algorithm.
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(a) (b)

Figure 5.9: Geodesic distance calculation. (a) displays the color image with overlayed

bounding box of the object. (b) is the colored geodesic distance map

of the given image. Red point corresponds to the middle point of the

bounding box. The points which have darker intensity in the map are far

from the middle point and lighter points are close to it. Same intensity

in two different images correspond to the same euclidean distance.
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The proposed point-wise human shape descriptor, fs, is the combination of the

normal, ηi, vectorial distance, ∆v, and geodesic distance, GDi of a point pi. Then, fs

becomes:

fs = [ηx ηy ηz ∆x ∆y ∆z GDi]
T (5.9)

5.2.2.2 Training the Classifier

Human refinement task can be considered as 2-label classification problem in the

machine learning perspective. Simply, the label of the first class refers to the human,

and the other label is for the non-human points, called as background. In order to

train, the point-wise human classifier, H-Classifier, positive human descriptors, f+
s ,

and negative human descriptors, f−s , are needed. The samples of f−s might be chosen

from the non human body points of the scene. f−s are computed as same as the positive

samples as explained in the previous section.

Randomized Decision Forests is chosen to train H-Classifier. It is one of the

state of art, fast and effective classifier [145] [22] [3] [163]. It is suitable and applicable

for a wide range of different tasks and problems [123] [101] [167]. A Decision Forest

consists of some number, T , of decision trees. It is called as randomized because of

training each of the decision tree by randomly selected a user determined number of

training samples. Each tree in the decision forest includes split and leaf nodes. Each

split node consists of an axes, fs(x), of fs, and a threshold τ . To classify a given

descriptor of a point, fs, the split nodes of the decision tree are evaluated by starting

from the root of the tree. Whenever a leaf node is hit in a tree, t, a decision distribution,

Pt(d|fs), is obtained.

In the case of human refinement problem, Pt(d|fs) can be considered as 2-bin

histogram whose bins refers the label of human or background. The result label of

randomized decision forest classifier can be average of all distributions given by the
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trees in the forest:

P (d|fs) =
1

T

T∑
t=1

Pt(d|fs) (5.10)

Or the result label can be the maximum number of voted label by each decision

three, t, in the forest as formulated in the following equations:

L(Pt(d|fs)) =

 1 if Pt(dH |fs) ≥ Pt(dB|fs)

−1 otherwise
. (5.11)

where L(x) is the decision label function of a given decision distribution of a tree,

t. dH and dB are the bin values of human and background labels in the distribution.

The normalized confidence score of a point belonging to the human region becomes:

Ci = 0.5 +
1

T

T∑
t=1

L(Pt(d|fs)) (5.12)

Then, the final decision label of the forest, L(P (d|fs)) becomes:

L(P (d|fs)) =

 1 if Ci ≥ 0.5

−1 otherwise
. (5.13)

Each tree is trained on a different set of randomly selected positive and negative

samples using the following algorithm [101]:

1) Randomly obtain a set of splitting candidates for a tree node, Φ = (fs(x), τ).

fs(x) is an axes of point-wise human shape descriptor, and τ is the split threshold.

2) The set of training points, S = {pi}, are divided into two sets, Sl and Sr, for

left and right leaf of the node by each Φ:

Sl(Φ) = {pi | fs(x) ≤ τ} (5.14)

Sr(Φ) = S − Sl(Φ) (5.15)
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3) Find the best splitting candidate, Φ∗, which produces the largest information

gain:

Φ∗ = argmaxG(Φ)
Φ

(5.16)

G(Φ) = H(S)−
∑

ψ∈(l, r)

|Sw(Φ)|
|S|

H(Sw(Φ)) (5.17)

where H(S) is the Shannon Entropy. It is computed on the normalized distri-

bution of the labels of the points in the set of S as in the following equation:

H(S) = −
n∑
i=1

Pr(li|PL) log2Pr(li|PL) (5.18)

where PL is the label distribution in the set S, and li is the label name.

4) If the current depth of tree is under a maximum threshold, the create left and

right children of the current node by using left and right subsets, Sl(Φ
∗) and Sr(Φ

∗).

5.2.2.3 High Level Observations and Color Discontinuity

Graph cut [21] [16] [17] [15] provides a powerful framework to produce globally

optimal object segmentation results. Its graph structure enables to combine multiple

different kinds of features in one joint framework. In our approach to the refinement

problem, graph cut is chosen as the infrastructure to incorporate the cues for a joint

final solution.

Point-wise human shape descriptor, fs, described in the previous section does

not include the color or intensity cues of the human body. There are several reasons not

to include this information into descriptor. First of all, it is so difficult to learn a gen-

eralized the color models of the human skin and the cloths which humans wear. Also,

different illumination conditions in the scene, the variance of possible backgrounds,

and various fashion style of the people make complicated the construction of a robust

human and background color models. Therefore, adding any color related cue into
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the human descriptor is avoided. However, the human refinement procedure can uti-

lize from the discontinuity of the color between the points in the scene. This can be

achieved by employing the color discontinuity in the graph cut framework.

The idea of putting high level observations into the graph cut was first intro-

duced in [135]. It is a point-wise graph cut based object tracker algorithm. In this

work, it is assumed that the object pixels at time t should stay connected in a different

location at time t+ 1. This could be done by forcing graph cut to put those group of

pixels as much as possible into the same label category.

The high level observations determined by some pre-processing steps can be

employed as a different layer in the graph. Some of the high level observations which

belong to the background can be the estimation of the ground plane, the walls, and

the objects which are previously known that they are not a part of the human body.

Indeed, there is an important disadvantage of labeling the points which belong to

these high level observations as hard background in the graph cut. If the high level

observations are retrieved by some estimation process, they might include some actual

foreground points. For example, some points which are actually the foot points on the

human body are estimated as the ground plane points as can be seen in Figure 5.7.

In the graph cut, it is desirable to state two attributes of these points. First, they all

together define an observation. Second, yet some of the points within this observation

might be misclassified by the estimator and those are subject to change their labels.

Standard graph cut technique [15], contains only single layer graph structure

in which only the point level observations can be employed, such as the intensity,

color, disparity, and etc. Single layer structure can be extended to the multi level

architecture to include high level observations, such as estimated ground plane in the

human refinement problem. In order to incorporate the high level observations, a

second layer of the nodes are added in addition to the standard first layer of the nodes.

Each node in the second layer represents a high level observation defined by a group of

the points in the first layer. In this case, a node is expected to be added to the second

layer to represent the estimated ground plane points. The interaction between first
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and second layers are established in a way that a second layer node is connected to the

some of the nodes in the first level which all together define that high level observation.

Multi-layer graph cut allow to combine low and high level observation in a joint

way. The confidence score of the classifier which is trained using point-wise human

shape descriptors, fs, and the color discontinuity between neighbor points are employed

as the low level observations into the multi-layer graph. The estimation of the ground

plane is incorporated as a high level observation and employed in the second layer of

the graph structure.

Multi-Layer Graph: The multi-layer undirected graph, GMulti = (V, E), is

defined by the set of the nodes, V , and the set of the edges, E . The set of nodes

consists of two subsets. The first subset of the nodes, VL, are the first layer nodes

which represent the low level observations. Each point in the scene is defined by a

node, ni, where ni ∈ VL. The second subset of the nodes, VH , represent the high level

observations employed in the second layer of the graph G. In this case, VH consists of

a single node, nH , which is for the estimated ground plane. Thus, the set of nodes, V ,

becomes V = {n1, . . . , nk} ∪ {nH}, where k is the number of the points in given scene.

The set of edges, E , consists of two types of the edges. The low level interactions

between the points in the first layer are formed by the set of the edges, EL. EL consists

of the edges, ei,j, between two neighbor nodes, ni and nj, in VL. The connections

between the low and high level observations are established by the edges, EH . Each

node, ni ∈ VL, in the low level, is connected to the node, nH ∈ VH , in the second level

by the edges, ei,H . Thus, E becomes E = {e1,2, . . . , ei,j, . . . , ek−1,k} ∪ {e1,H , . . . , ek,H}.

The segmentation of the multi-layer graph, GMulti = (V, E), is assigning a label

li, from a set of labels, {lH , lB}, to each node, ni, in V . In this case, lB refers to the

background, and lH refers to the human point. The set of all labels assigned to nodes

in V is denoted as L̃. The final mask of the human is formed by the points whose

labels are assigned to lH by graph cut.

Graph Cut Energy Functions: The energy function of the multi-layer graph

cut consists of two terms, namely Regional term, R, and the boundary term, B, as in
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the standard graph cut energy equation:

E(L̃) =
∑
i∈V

R(li) +
∑
{i,j}∈V

Bi,j(li, lj) (5.19)

where i and j are the nodes of any edge, ei,j, in E .

Regional term of the multi-layer graph cut employs the confidence score of the

H−Classifier, Ci, for each point as defined in the Equation 5.12. Also, The high level

observation which is the ground plane estimation in this case is incorporated into the

regional term. More precisely, the regional term of the multi-layer graph cut energy

function becomes:∑
i∈V

R(li) = α1

∑
i∈VL

− ln(pc(i, li)) + α2(HL(nH , lH)) (5.20)

The first term in the above equation describes the confidence score of H −Classifier.

Second term defines the feature of the high level observation in the system. α1 and α2

is the relative influence between two terms.

The shape likelihood of a point, pc, is formulated using the confidence score, Ci,

produced by H − Classifier as following:

pc(i, li) =

 Ci if l = ”foreground”

1− Ci if l = ”background”
. (5.21)

HL defines the similarity function of of the observation for the high level obser-

vation node and its given label, LH . Since, the estimated ground plane is considered as

the background and there is no prior information available to measure the confidence

of the ground estimation process, HL(nH , lH) is set to 1 if lH is background. Simple, it

is set to ”0”, if lH is ”foreground”.

The color discontinuity and the interactions between low and high level obser-

vations are defined in the boundary term of the energy function, E(L̃). As in [14],

the color discontinuity between neighbor points in the first layer of the graph can be

formed as the following:

B − Colori,j∈VL = λ1
1

dist(i, j)
e−(||ci−cj ||2)/2σ2

(5.22)
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where ci and cj are the color of the point i and j, dist(i, j) is the standard L2 Euclidean

norm yielding point distance, σ2 is the average squared norm in the image.

The graph edges between one first layer node and high level observation node

depends on the distance between the normal of a point, pn = (nx, ny, nz), in the

estimated ground plane and the estimated normal of the ground plane, nH . It can be

formed as:

B −Highi∈VL,j∈VH = λ2e
−(||pn−nH ||2)/2σH

2

(5.23)

where σH is the averaged squared distance between the normal of each ground

plane point, pn, and the estimated normal of the ground plane, nH . λ1 and λ2 are to

weight these two boundary terms.

The final labeling, L̃F , can be achieved by minimizing the energy function in

Equation 5.19 by the graph cut algorithm explained in [15]:

L̃F = argminE(L̃)
L̃

(5.24)

The proposed refinement process which utilizes from the multi-layer graph cuts

and H − Classifier is called as H − ClassifierMulti−GC after this point.

5.3 Experimental Results

Several experiments were conducted to quantify to analyze the performance

of the proposed algorithms. In order to use in the experiments, a subset dataset

of DontHitMe, called as DontHitMe-Refine, which includes the manually annotated

ground truths of 103 images are used. In order to diversify this dataset, it is ensured

that the same person does not appear in multiple images of DontHitMe-Refine. Also,

as possible as background variation tried to be included into the dataset in the creation

of DontHitMe-Refine. Ground truths are generated so carefully with the help of an

software which is implemented just for this purpose. The software allows the user to

label the human body pixels in detail.

Two different set of experiments are performed. The first set of the experiments

aim to measure the performance of the methods which do not utilize from the prior

110



information, but only uses generic cues, described in Section 5.2.1. The second set

of the experiments analyze the performance of the point-wise classifiers explained in

Section 5.2.2.

5.3.1 Refinement using generic cues and no prior information

Different tests which incorporate different combination of the generic cues were

performed to see the outcome of GC-Refine explained in Section 5.2.1.1. Seven different

combinations of three generic cues which are the color, depth and normal are used

in this experiment. GC-Refine is tested with each of the combination of the cues

separately. All of the images of DontHitMe-Refine dataset are refined in these tests.

The same formula in Equation 4.2 is used to measure the overlap between the results

of GC-Refine and the ground-truths. The median overlap scores of these experiments

can be seen in Table 5.1. The highest performance is achieved by incorporating only

the depth of the points into the feature vector of GC-Refine whose median overlapping

score is 0.55. The combination of the depth and normal cues produces second best

results. The test case in which only the normal of the points are used in GC-Refine

gives the third best performance.

Figure 5.10 displays the results of this experiment by using the same test image

for the different combination of the cues. Only the best three results of the tests are

illustrated. Figure 5.10 (a), (b) and (c) shows the outputs of the tests in which only

depth, the combination of the depth and normal, and only the normal cues are used,

respectively. It can been seen that a simple scaling of the bounding box, B(x,y,w,h),

to obtain the human model, MH , is not sufficient. In this case, MH contains some

points which are originally background points and belong to the human far behind and

left of the target model. Hence, all those points are segmented as the human by three

tests regardless of the combined cues. If it is looked at the foot level of the human in

Figure 5.10 (a), it can be noticed that some ground points are included to the refined

region. This is a natural outcome of chosen the depth as the only cue in the process.

Those ground points have the similar depth values as the human model, MH , so they
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are added into the output mask. Combining the normal and depth of the points did

not help to improve the results, but it caused to exclude some points at the upper

body level. It is mainly because the normal of those part of the body mostly exist in

the background.

A separate set of tests were performed to see the effects of adding distance

penalty as another cue in addition to the combination of the cues in the previous

experiment. The median overlapping scores of this experiment can be seen in Table

5.2. These top three results are achieved by using only depth, the combination of the

depth and normal, and lastly by combining all cues which are rgb color, depth and the

normal. The distance cue helps to improve the results for each tests. For example, the

best overlapping score which is obtained by only depth cue in the previous experiment

increase to 0.61 from 0.57 after utilizing from the distance. The best three results of

different possible cue combinations are displayed for the same image in Figure 5.11.

The results in this figure are shown according to descending order of the overlapping

scores of the cue combinations. An obvious effect of incorporating the distance cue can

be seen in 5.11 (a) where only depth data is used in the refinement. It removes the

ground points at the foot level which are assigned to large distance penalty from the

human region and yields better result. However, a drawback of it can be observed in

Figure 5.11 (b) and (c). Some of the points on the head of the human eliminated from

the segmented region. This is due to far relative distance of these points to the middle

of the body.

In order to analyze the performance of extracting the non-region of interest from

the object model, MH , GC-Refine-Pre refinement method is experimented in the same

way. As in the previous tests of GC-Refine, all different combinations of the cues are

analyzed. As it can be foreseen, provided more clean models yield better refinement

results. The median overlapping scores of this experiment are summarized in Table

5.3. The best score is achieved if only depth data is used. Its score goes up to 0.66

from 0.61 which was achieved by GC-Refine with distance cue in Table 5.2. The results

of best three combinations of the cues are shown for the same image in Figure 5.12.
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Used Cues Median Overlap Score

Only RGB 0.36
Only Depth 0.55
Only Normal 0.46
RGB+Depth 0.37
RGB+Normal 0.40
Depth+Normal 0.52

RGB+Depth+Normal 0.43

Table 5.1: Median overlap scores of GC-Refine method for DontHitMe-Refine data
set. Each row specifies an experiment in which different combinations
of the cues used in the refinement process by GC-Refine approach. For
example, RGB+Depth means that the combination of RGB color and
depth image data are incorporated into GC-Refine for that experiment.

The outcome of only depth is displayed in 5.11 (a), the combination of the depth and

normal in 5.11 (b), and the combination of rgb color, depth and normal in 5.11 (c).

The main improvement in the results of GC-Refine-Pre is that they have much less or

no background points. Especially, the points of the human who is on the left far side

is removed from the final refinement. Those background points were problematic for

GC-Refine as can be seen in Figure 5.10 and 5.11.

A result gallery of the methods can be seen in Figure 5.15.

5.3.2 Point-wise Classifier

Several experiments were conducted to measure the performance of point-wise

classifier, H − Classifier, and its extended version, H − ClassifierMulti−GC , ex-

plained in Section 5.2.2. In order to train the classifiers in each of the experiments

of this section, DontHitMe-Refine is divided into two subsets, DontHitMe-Refine-Train

and DontHitMe-Refine-Test. No same human appears in both of these two datasets.

DontHitMe-Refine-Train contains 51 images and its ground truths were used the train

the classifiers. DontHitMe-Refine-Test includes 52 images and used for the testing

purpose.
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Cues (In addition to Distance Map) Median Overlap Score

Only RGB 0.43
Only Depth 0.61
Only Normal 0.47
RGB+Depth 0.48
RGB+Normal 0.45
Depth+Normal 0.57

RGB+Depth+Normal 0.51

Table 5.2: Median overlap scores of GC-Refine method for DontHitMe-Refine data
set. In this case, in addition to other cues, distance map is incorporated.
As it is defined in Table 5.1, each row specifies different combinations of
the cues used in the refinement process by GC-Refine approach.

Method Median Overlap Score

Only RGB 0.48
Only Depth 0.66
Only Normal 0.52
RGB+Depth 0.51
RGB+Normal 0.53
Depth+Normal 0.61

RGB+Depth+Normal 0.58

Table 5.3: Median overlap scores of GC-Refine-Pre method for DontHitMe-Refine
data set. As it is defined in Table 5.1, each row specifies different com-
binations of the cues used in the refinement process by GC-Refine-Pre
approach. The distance map cue is added by default into all experiments.
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(a) (b)

(c)

Figure 5.10: The results of GC-Refine for different combinations of the cues in a
given same input image . (a) shows the refinement result, if only the
depth data is used, (b) displays the result of combining the normal and
the depth of the points, (c) shows the refinement produced by using
only the normal cue. It can be realized that these combinations of the
cues produced best three overlapping scores in Table 5.1.

The positive samples are obtained from the ground truth of the human masks in

DontHitMe-Refine-Train dataset to train the classifiers. All the points inside a ground

truth mask are used to generate the positive samples. However, negative samples are

not computed for all points which stay outside of the ground truth. Only one of every

two pixels in a row of the image is added to the set of the negative samples. In this

way, the training time of the classifiers is aimed to be reduced. Also, no points which
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(a) (b)

(c)

Figure 5.11: The results of GC-Refine for a given same input image. In this case,
the distance cue is incorporated into all different combinations of the
cues by default. (a) shows the refinement result, if only the depth data
is used, (b) displays the result of combining the normal and the depth
of the points, (c) shows the refinement produced by combining RGB
color, the normal, and the depth of the points. It can be realized that
these combinations of the cues produced best three overlapping scores
in Table 5.2.

do not have valid depth data are not included in the training set. 5 decision trees were

trained for each of the classifiers.

The first set of tests were performed to analyze the performance ofH−Classifier

when it is trained with the point-wise shape descriptors, fs, which includes different

combination of the cues. The normal, η, vectorial spatial distance, ∆v, and the geodesic
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(a) (b)

(c)

Figure 5.12: The results of GC-Refine-Pre for a given same input image. (a) shows
the refinement result, if only the depth data is used, (b) displays the
result of combining the normal and the depth of the points, (c) shows
the refinement produced by combining RGB color, the normal, and the
depth of the points. It can be realized that these combinations of the
cues produced best three overlapping scores in Table 5.3.

distance, GD of the points are combined in fs in 7 different possible way. A different

H − Classifier is trained for each of these combinations using the same DontHitMe-

Refine-Train dataset. Then, the points in the images of DontHitMe-Refine-Test are

labeled as the human or background by these classifiers. Median overlapping scores

are computed for each tests. They can be seen in Table 5.4. The best performance, the

median overlapping score is 0.79, is achieved when all three of the cues are included
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Method Median Overlap Score

Only ∆v 0.75
Only η 0.58

Only GD 0.78
∆v + η 0.785

∆v + GD 0.77
η + GD 0.78

∆v + η + GD 0.79
∆v + η + GD + RGB 0.78
∆v + η + GD + LAB 0.78

Table 5.4: Median Overlap scores of H − Classifier for different cue combinations
in its descriptor, fs. For example, ∆v + η means the vectorial spatial
distance and the normal of the points are used in the descriptor, fs.

in fs. In the case of missing one of the cues in fs, the scores dropped down. Also,

the classifier which utilizes from the normals, η, was unable to distinguish between

background and human points. Thus, the normal, η, is not capable to represent the

human body points alone. However, when it is associated with the vectorial spatial

distance, ∆v, they both performed well by hitting the score of 0.785.

In addition to three cues related to the shape, 2 more tests were conducted

to see the effect of incorporating the color of the points into the point-wise human

descriptor, fs. Simply, three channels of RGB color of the points are included in fs

as three additional dimensions. Same test is also performed for LAB color space. In

this case, LAB color of the points are put in fs. The overlapping scores of these two

classifiers which include the color information are shown in the last two rows of Table

5.4. As it is expected, adding the color reduced the performance of the classifier from

0.79 to 0.78. This is mainly because of the color variation of the human skin, clothes,

background and different illumination conditions. No difference between different color

spaces is observed. They both dropped the overlapping scores in the same amount.

The best four classifiers are picked up to run on the same image. The results

of these four classifiers for a given image are illustrated in Figure 5.13. Figure 5.13
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(a) (b)

(c) (d)

Figure 5.13: The results of H − Classifier for a given same input image to classify
its points. (a) shows the classification result, if all three shape cues, ∆v,
η, and GD are incorporated in the descriptor fs, (b) displays the result
of combining all three shape cues and RGB color in fs, (c) shows the
refinement produced by combining ∆v and η, (d) displays the result of
η and GD in fs. It can be realized that these combinations of the cues
produced best four overlapping scores in Table 5.4.

(a) shows the result of the test in which all three shape cues are used, (b) displays

the combination of the shape cues and RGB color, (c) the combination of the vectorial

spatial distance, ∆v, and the normal, η, (d) the combination of the geodesic distance,

GD, and the normal η. As it can be seen in (b) in which the color is used an extra cue,

some points in the background are classified as the human. It is easy to guess that the

classifier learned the similar color models that these points have, so they are labeled as
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the human. Not utilizing from the geodesic distance caused mislabeling of the points

at the head level of the image (c). Since the normal computation might be erroneous

at the points where the depth information is not so accurate at the sharp edges, in the

hair of the human, those points might be labeled as the background even they stay

inside the human body. It is possible to some of those points in (c). The negative

effect of not using the vectorial spatial distance, ∆v, can be observed in Figure 5.13

(d). In this image, some of the points which belong to the human on the left side are

put into the classified region. Their spatial distance in z direction, ∆z is expected to

be large and labeled as background. Since this information is not included into fs, this

result becomes usual.

Also, the images of DontHitMe-Refine-Test is refined byH − ClassifierMulti−GC

method which is explained in Section 5.2.2.3. The confidence scores of H−Classifier

which produced the best median overlapping score in Table 5.4 by combining three

shape related cues, ∆v, η, and GD, in fs are used in the multi-layer graph cut frame-

work. This process can be considered as second stage in the refinement process. The

median overlapping scores of H − ClassifierMulti−GC is listed in Table 5.5. A re-

markable improvement was achieved by this method. Incorporating the estimated

ground plane as a high level observation, utilizing from the shape confidence score

of H − Classifier, and employing the color information jointly in a multi-layer took

the median overlapping score from 0.79 to 0.92. Figure 5.14 displays some examples

refined by H − Classifier and H − ClassifierMulti−GC . (a) and (c) of this figure

shows the results of H − Classifier. (b) and (d) displays the refinements results of

H − ClassifierMulti−GC for the same images. In both of the results, proposed multi-

layer approach helped to remove some ground points and also background points clas-

sified as the human by H −Classifier. The color discontinuity term in the graph cut

provided to segment the points where there is no depth data is available. For example,

some of the hair points on the left side of the neck of the woman in Figure Figure 5.14

(a) do not have valid depth information. Hence, H−Classifier was unable to classify

hose points. Yet, H − ClassifierMulti−GC included them into the final refined region
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(a) (b)

(c) (d)

Figure 5.14: Comparison between the results of H − Classifier and
H − ClassifierMulti−GC . Left column images, (a) and (c), dis-
play classification results of H − Classifier. Right column images
show the refinement outputs of H − ClassifierMulti−GC for the same
image set. H − ClassifierMulti−GC improves the results by eliminating
more background points at the foot level of the human. Also, its color
continuity term helped to classify some points correctly on the human
body which have no valid depth data, such as in the hair of the woman
in (a) and (b).

as shown in Figure 5.14 (b), because of the color similarity between other hair points

which have valid depth.

The proposed H − Classifier and H − ClassifierMulti−GC are compared to

GrabCut [157], and the body part labeling method explained in [165] [166] which runs

in the Kinect devices. The same set of images DontHitMe-Refine-Train and samples
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Method Name Median Overlap Score

H − ClassifierMulti−GC 0.92
H-Classifier 0.79

H-Classifier-SVMs (trained by SVMs) 0.67
GC-Refine-Pre 0.66

GC-Refine 0.61
GrabCut [157] 0.57

Depth difference features from [165] [166] 0.53

Table 5.5: The comparison of the best performed methods in DontHitMe-Refine data
set. Only the result of cue combinations which performed best are taken
into this table for H − ClassifierMulti−GC , H − Classifier, GC-Refine-
Pre, and GC-Refine. For example, GC-Refine in this table uses the depth
and distance map cues in its refinement process as its best overlapping
score can be seen in Table 5.2.

are used to train their classifier. In this case, human body part labeling problem

is reduced to a simple human/background problem. It did not perform well in the

test dataset, DontHitMe-Refine-Test, and got the overlapping score of 0.53 as listed

in Table 5.5. Their descriptor was unable to distinguish the human and background

points. Also, H − Classifier and H − ClassifierMulti−GC outperformed significantly

the results of GrabCut. Figure 5.15 displays a gallery of the images which shows the

results of different methods. Because of the space limitation, for a given image and

the bounding box around the human which is going to be refined, only the best result

of GC-Refine-Pre obtained by using only depth data, H −Classifier which combines

all three shape cues, H − ClassifierMulti−GC , and Body Part Classifier [165] [166] are

illustrated.

Random Decision Forests vs Support Vector Machines (SVMs): In

order to analyze the performance difference between the Random Decision Forests and

SVMs, another point-wise human classifier, H −Classifier− SVMs, was trained us-

ing SVMs [27]. Radial Basis Function (RBF) was used as the kernel function of SVM.

The same human shape descriptors, fs, to build H − Classifier, were used to train

H−Classifier−SVMs. Also, to assign the same weight to the different cues in fs, all
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dimensions of fs are normalized to same range. In this way, same conditions were estab-

lished to compare the performance difference between them. SVMs performed worse

than Random Forests in the experiments. As it can be seen in Table 5.5, the overlap-

ping score of H − Classifier which was trained by Random Forests is 0.79 whereas

the performance of H −Classifier−SVMs dropped to 0.67. The worse performance

of SVMs is connected to its decision function explained in Equation 2.8. Basically, the

distance to the hyperplane which is the decision margin of the space is measured. In

this decision function, all the cues within the descriptor, fs, take the same amount of

importance. However, our descriptor includes different kinds of the cues which may

require different weights in the training and testing phases of the classifiers. SVMs does

not contain this internal mechanism to balance the weights between different cues. For-

tunately, Random Decision Forests supplies this good feature. In the training phase,

it separates the data according to maximum possible entropy among different labeled

sets. Computing the entropy among the sets does not depend on weighting the each

dimension of the descriptors, fs, differently. Random Forests can handle it because of

its this character. Therefore, Random Forest based H −Classifier outperformed the

SVMs based classifier. Some sample results of H − Classifier − SVMs can be seen

in Figure 5.17.

5.4 Conclusion

In this work, we tackle with the problem of refining the low dimensional rep-

resentation of the human shape which is a bounding box in this case to obtain more

accurate point-wise mask of the human which is more beneficial some type of the ap-

plications, such as interactive games, human behavior understanding, and the pose

estimation. Two types of the methods are proposed.

The first type of the proposed methods utilizes from only the generic cues,

such as the color, depth, and the normals of the points. They do not use any kind

of the prior information, but they only extract the necessary cues from the given

single scene. These methods are built on the graph cut framework which enables to
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incorporate the multiple cues and point-wise fast segmentation. Namely, GC-Refine

and its extended version GC-Refine-Pre which obtain more accurate models to feed

graph-cut by estimating and the ground plane and extracting cleaner region of interest

are developed.

A subset dataset of DontHitMe, called as DontHitMe-Refine, which contains the

point-wise ground truths of 103 images is generated. The performance of GC-Refine

and GC-Refine-Pre are measured by refining the images in DontHitMe-Refine. Both

of these proposed methods performed better than GrabCut [157]. Providing cleaner

models to GC-Refine-Pre improved the performance from 0.61 to 0.66.

In order to incorporate the prior information into the refinement process, a

novel point-wise human shape descriptor is developed. A point-wise human classi-

fier, H − Classifier, which is trained by the human shape descriptor is proposed.

H − Classifier outperformed the methods which uses only generic information, GC-

Refine-Pre, GC-Refine, and GrabCut. Also, multi layer graph cut is proposed to com-

bine the low level and high level observations in the refinement process. The confidence

scores achieved from H − Classifier, the color information of the points, and the

ground plane estimation as a high level observation are all employed in the multi layer

graph framework for a joint segmentation. This post-processing step allowed better

results and improved the overlapping score from 0.79 to 0.92.

Also, the proposed methods are compared to the famous body part labeling

method run in the consumer Kinect devices [165]. In this case, their descriptors were

trained only for two sets, the human and background. The low performance of this

method showed that their method is not really suitable for the refinement of low di-

mensional human shapes.

As the future work, the performance of the proposed methods can be analyzed

for the cases if some part of the human body is occluded. The power of the human

shape classifier can be measured for different human poses, such as sitting humans on

the chair, and laying humans on the ground. Another dataset can be recorded for

this kind of test. Also, the proposed shape descriptor, fs, can be extended to generic
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object shape descriptor to refine any kind of object if its low dimensional representation

is given. As a start point of this extension, its given low dimensional representation

might be added into the descriptor as additional dimensions. In this way, different

associations between the low dimensional representation of the object and its shape

can be learned by a decision tree type classifiers. It can be observed that this type of

association can not be included into the classifier by only normalizing the axes of the

descriptor by using the low dimensional representation of the object.
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Input Image Body Part Classifier [165] [166] GC-Refine-Pre H − Classifier H − ClassifierMulti−GC

Figure 5.15: Sample results of different refinement methods. Column headings show
the name of the method.Only the results of the cue combinations which
produced the best overlapping scores are illustrated for GC-Refine-Pre
and H − Classifier.
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Input Image GrabCut H − ClassifierMulti−GC

Figure 5.16: Sample results of GrabCut and H − ClassifierMulti−GC . Column head-
ings show the name of the method.
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H − Classifier H − Classifier − SVMs

Figure 5.17: Sample results of H − Classifier − SVMs and H − Classifier. Col-
umn headings show the name of the method.
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Chapter 6

POINT-WISE OBJECT TRACKING

By definition, object tracking means to locate the position and orientation of

an (or multiple) object over a sequence of sensory information. In other words, an

object tracker distinguishes the desired object from its surrounding environment and

follows it over time. The tracked object might be someone’s face, hand, a vehicle on

a road, an aircraft, a fish in the sea, a walking person, a flying bird or anything in

the universe which has some features which can be captured by a sensor. The most

common used sensors for this purpose are cameras(color and IR), radar and Lidar. A

tracking algorithm processes the data coming from one or multiple of the sensors finds

object of interest and keeps track of its position, movements and orientation, called as

state of the object, in the specific domain.

Object tracking generally is a difficult task. Possible illumination changes in

the scene, large object movements, noise in the sensor data, shape or appearance

changes of the object or scene, partial occlusion or disappearance of object, sensor

movement, loss of information projection from object space to tracking space or need

of real time computational power requirement can make the tracking process hard.

There is currently no algorithm which overcomes each of these problems and provides

fully accurate object tracking. So tracking problem is usually constrained by some

assumptions to simplify the tracking process. For example, one can assume that there

is no sudden changes in the appearance or motion of the object. Or one can set the

sensor as stationary and the object is not subject to occlusion and disappearance.

Moreover, the prior information about the object can be provided, such as possible

trajectory, appearance, and illumination conditions.
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time: t time: t+1 time: t+2 time: t+3 time: t+4

Figure 6.1: Sample two image sequences for tracking the objects in them [87]. First
rows images belong to a video in which the hand of a person supposed
to be tracked. The second set of the images contain a human face which
needs to be tracked over time. At the top of each column, their times-
tamps are given.

The sample image sequences taken from two different videos to track the hand

of a person and the face of someone can be seen in Figure 6.1 [87]. Both of the image

sequences have their timestamps changing from t to t+4. In the image sequences of

the first row, the hand moves and make some gestures. As it can be seen that the

hand is deforming. The tracking process is supposed to locate the hand points in each

of these images changing over time. In the other image sequences which can be seen

in the second row, the head of the person moves and he mimics. In this case, tracking

the face means that locating all the face points in the images over time.

Object tracking algorithms have a variety of uses, some of the applications are:

(1) Robot vision: The robots need to know its surrounding environment, so

tracking the objects around itself is so important to accomplish its task. For example,

an unmanned ground vehicle needs to track the road to drive by itself [35] [152]. Or

a humanoid robot needs to track the face [66] [108] and hand [199] [68] of a human to

interact to a person.

(2) Video compression and indexing: Object detecting and tracking is a part of
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some video compression algorithms and multimedia retrieving process from databases

[131] [1] [162].

(3) Automated surveillance: The tracking system is used to monitor the object

movements, people and events in the public or private places, such as in front of a

building, a shopping mall, a road, car parks, etc. The system needs to distinguish the

interest of the object and track it [75] [184] [98] [42].

(4) State/Trajectory prediction of the vehicles: Aircrafts and missiles process

their sensor data to track their positions over time [8] [178] [201].

6.1 Related Work

The problem of tracking objects in the environment has taken attention of the

computer scientists for last five decades. Numerous object tracking algorithm exist in

the literature. Each of them works well under different constraints about the environ-

ment and the object. One who searches for an object tracker should first determine

his/her needs to achieve high accuracy and accomplishment of tracking task. Listing

the features of the object, environment, and the motion simplifies to find the most

proper tracker. This list defines the scenario of a task specific problem. For exam-

ple, in one scenario, the object may have non-linear motion, the object shape might

be non-rigid shape and the environment is not complex. In another scenario, object

appearance might change during the tracking process, move at constant velocity and

requires real time tracking. Each of these scenarios requires different type trackers.

Also, the researchers design the algorithms by first setting the tracking problem to a

scenario.

The first known object location estimation mechanism was developed by a Hun-

garian scientist, Rudolf Kalman, in early 1960s. His method, called as Kalman Filter,

is described in [79]. Kalman Filter became the main object tracking principle for

years. Engineers discovered the application of it in different areas. It has been used

in the satellite navigation, aircraft autopilots, positioning systems of the ships, radar

tracking, and visual tracking systems. Kalman Filter involves linear Gaussian models
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and not capable of non-linear and/or non-Gaussian systems type problems, so it was

extended to Extended Kalman Filter and Unscented Kalman Filter [78] [77] [181].

Kalman filter is weak at the problems in which the posterior of the tracked

object needs to be multi modal. Particle Filter is designed to handle this kind of

problems. Particle Filters was born at early 1950s. Its first mathematical methods

was described in [113]. It became one of the most popular object tracking methods in

last two decades. Particle Filter has been highly started to applied in computer vision

problems after it was showed in [9] [72] that it can be used to track objects robustly

in the image sequences.

Particle Filter has been accepted as one of the most powerful approach in the

computer vision community to solve the problems in which the tracked object can

be represented by a low dimensional modal. Rough borders of the object can not be

enough in some cases as the result of Particle Filter tracking process, more detailed

border representation might be necessary. Active contours model was introduced in

[81] and applied intensely in the tracking problems which requires exact representation

of the object borders. This method, called as Snakes, attempts to adjust the initialized

contours on the borders of the object in an iterative framework. An energy function

is constructed and associated to the contour. Minimum value of the energy function

represents the object borders. This energy function is minimized iteratively in the

Snakes framework. The final position of the contour draws the object border.

There is an extensive of work on object tracking in the field. Its crucial need for

some applications make the scientist to focus and develop many different approaches.

The tracking methods differ according to object representation types. Different object

representations require different solutions. A categorization of object representations

was made recently by Yilmaz in [205]. One can represent a tracked object as a point

and propose a method as described in [160]. To track a non-rigid object, it can be

formed from primitive geometric shapes as in [31]. If the object has a complex shape

and its exact detailed border have to be output, an active contour based method [206]

can be the solution.
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Tracking the objects by representing them as point-wise is also possible. Optical

flow is one method to estimate the motion of the points in given image sequences [44]

[106] [11] [107] . This method assumes that the brightness of the point is constant in

consecutive images. Optical flow method can be extended to estimate the movement of

all points in the images [44]. In this way, all object points in the scene can be tracked.

Graph cut based methods provide point-wise object tracking. These kind of

approaches is introduced first in [24] [135]. A distance penalty method was explained

in [110] to eliminate non-object regions by penalizing them in the graph cut energy.

This was a novel approach to convert the graph cut to a tracker. However, the future

work of that approach did not come to the field.

The methods in [24] [135] introduced a novel way to add the locations of the

detected objects as high-level observations. Multi-layer graph cut construction for

object tracking is described in these works. Background subtraction is performed

and a set of candidate object blob set obtained in the preprocessing step. Special

high level observation nodes are added as a layer in the graph. These nodes provides

temporal and spatial consistency for the object tracking between the frames. The pixel

displacements between the frames are estimated by Lucas-Kanade method. The color

information is carried only from the previous frame. Complete occlusions are handled

and new objects are created after some time later if they were occluded. A second

stage post-processing, a second multi label graph cut with alpha expansion algorithm,

is performed for the merged objects. In the graph cut based tracker explained in [135],

occluded parts of the objects are tracked over time by adding some new terms into the

graph cut. The object pixels which don’t move close to average displacement of the

object in last frame are penalized, so that they are most likely disappeared or occluded

in next frames.

A straightforward graph cut tracking method is described in [130]. In this

tracker, RGB color histogram models are carried from previous frames to the next. A

new model is combined with the existing one coming from previous frame. A simple
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location prediction mechanism is employed. To speed up the graph cut, some prepro-

cessing is applied in the constructed graph, then the graph is cut.

A pixel-wise graph cut and optical flow based object tracking algorithm for

augmented reality is presented in [122]. Since augmented reality applications are so

depended on the computational time of the methods, this algorithm works in real-time.

It does not rely on the preexisting 3D models, but the locations of the objects points

are calculated with the help of the optical flow.

In live video object tracking tasks, the frames cannot be layered to construct a

3D graph and segment the object in this graph structure. Therefore, the locations of

the pixels must be carried from one frame to the next one. [51] describes a method to

construct a location probability map of the pixels for the next frames. This approach

utilizes from the location map by employing it into the graph cut method to track

the objects in live videos. A method which combines optical flow and graph cut to

track the people only using color images is explained in [169]. In this approach, the

people are modeled as a ellipsoid shape and the location of a person is estimated by

the optical flow type method. Graph cut is performed at each frame based on the

predicted models.

6.2 Approaches

Point-wise object tracking is possible in two main ways. In first way, the lo-

cation of the object is estimated in next frames. This estimated location is somehow

incorporated into the tracking procedure. In the second way, the object is tracked by

not estimating the location of it. In this approach, the location obtained from the

last frame is carried to the next frame. These two types of developed methods are

explained in the next sections.

6.2.1 Tracking Without Location Estimation

In this work, single image refinement method explained in Chapter 4.2 is ex-

tended to work as a tracker over video sequences of the moving objects. Graph cut
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tracker is initialized with the ground truth positions of the object in the first frame.

Graph cut segmentation algorithm explained in Chapter 4.2 is performed in each frame

of the tracking process. The desired object region is retrieved as a mask from the graph

cut. However, the raw object mask generated by graph cut technique might contain

some noisy, small and weakly-connected foreground regions, because the images con-

tain a non-homogeneous color distribution inside the object regions. In order to clean

up those regions, morphological opening and closing are done and found the connected

components. The largest region is taken as the final object region, Mt. This object

region is carried to the next frame without changing its location in the image space to

form the fore/background models of the graph cut method. The carried object region

in next frame is called as, Mt+1. Simply, the foreground, MF , and background, MB,

models are obtained by dilation and erosion processes of the carried object mask, Mt+1,

in next frame. The process is illustrated in Figure 6.2.

6.2.1.1 Results

For the comparison, in the way of how graph cut segmentation algorithm is

extended for tracking, the SVM object segmentation is also extended to SVM-Tracker ,

as described in [87]. After an initialization, the object model is updated based on

the classification results from the previous n frames by adding the newly predicted

positive and negative examples and throwing away the oldest examples, like a sliding

window scheme. However, the training data for SVM is no longer ground truth but

the classified results from the previous n frames. The graph cut tracking algorithm

which only has color information is called as Color GC-Tracker , the one which also

includes distance penalties is called ColorD GC-Tracker , and the SVM-based tracker

is SVM-Tracker . ColorD GC-Tracker involves color and distance penalty information.

In this experiment, the accuracies of the trackers are measured and analyzed.

The trackers are started with the ground-truth image in the first frame and run until

the frame which has a ground-truth. The generated object mask in the last frame

which has a ground-truth is saved. Then, trackers are re-started by setting the object
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Figure 6.2: Calculation of foreground and background models of the single frame
graph cut tracker. The output mask of the object at time t is carried
to the next frame. The fore/background masks are obtained by dilation
and erosion operations. The white colored points display the masks of
the models.

region to the ground-truth. Total 502 results, the number of the images in the ground-

truth sets, are produced in this way for Trail, Hand, and Head data sets. The details

of these datasets are explained in Section 4.1.4. The same area overlapping formula

in Section 4.1.4 is used to measure the accuracies of the trackers. Table 6.1 shows the

median overlap scores of this experiment. Some results of the trackers from the trail,

hand and head datasets can be shown in Figure 6.3. These results belong to the frames

which have ground-truths in the datasets.

Overall accuracy of ColorD GC-Tracker is comparable with SVM-Tracker as can
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Method Name Trail Hand Head

CC-Tracker [150] 0.72 — —
Color GC-Tracker 0.46 0.92 0.27
ColorD GC-Tracker 0.77 0.96 0.82
SVM-Tracker 0.74 0.95 0.68

Table 6.1: Median overlap scores of the trackers for the data sets. Since CC-Tracker
is specific to tracking trails, it does not have overlap scores for the Hand
and Head data sets. The details of these datasets exist in Section 4.1.4.

be seen in Table 6.1. ColorD GC-Tracker performs better than SVM-Tracker in this

test. The big overlap score difference between SVM-Tracker and ColorD GC-Tracker

for Head set test is caused by similar colored background and foreground regions in

the images. Distance penalty information incorporated in ColorD GC-Tracker helped

it for better tracking.
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Color GC-Tracker ColorD GC-Tracker SVM-Tracker

Figure 6.3: Sample results of the trackers. First row results are from Trail, next two

rows are from Head and last two rows show Hand dataset results. The

results of each row belong to the same ground-truth image.
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6.2.2 Tracking by Estimating the Location of the Object

The method, ColorD GC-Tracker , explained in the previous section does not

estimate the location of the object, but it assumes that the object makes no movement

in the next frame. However, in real life scenarios, either the object or the camera might

move in the scene. It sometimes is possible that both of the camera and the object

might move. In order to deal with these conditions and build more robust trackers, it

is better to incorporate the estimated location of the object to the point-wise tracker.

Therefore, a point-wise object tracker which incorporates SIFT feature [104] [105] based

location estimation mechanism is developed. Also, ColorD GC-Tracker utilizes only

from the color images. In order to make the tracking process more robust, the newly

developed tracker, called as MM−Tracker, fuses the features which are obtained from

the images of the depth and color cameras. A diagram of MM − Tracker is given in

Figure 6.6.

6.2.2.1 Close Look at the Keypoints

A keypoint in a scene can be defined as an interesting point in its surrounding

area. Keypoints are usually found in high contrast regions, such as at the corners, and

on the edges of the objects. They are supposed to be invariant to the illumination

changes, orientation, scaling and distortion. A set of the keypoints obtained from an

object can describe that object. These set of the keypoints can be called as the feature

descriptors of the objects. The keypoints are useful in wide range of tasks in the

computer vision field, such as object recognition, tracking, localization and mapping of

the intelligent systems, 3D reconstruction, camera calibration, and building panorama

images.

An example usage of the keypoints is the robot localization. In order to localize

a robot in a map, one of the ways is to find the keypoints around the robot and match

them with the keypoints previously obtained from the map. Keypoint computing can

be made in any sensor space, such as in the color images and/or LIDAR data. In the

localization method of an indoor robot moving inside a museum, this kind of approach
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is used [182]. The color camera pointing toward the ceiling of the museum captures the

ceiling mosaics. The keypoints extracted from the mosaics are matched in the ceiling

map of the museum. Thus, the location and pose of the robot is estimated.

Harris corner detector [57] is one of the first proposed eigenvalues based corner

detector. It is not scale invariant. [117] extended this work by using the determinant

of the Hessian matrix, and the Laplacian to make Harris corner scale invariant. [164]

made small modification to Harris corner detector by changing its scoring function and

used this feature for the object tracking.

Later, Scale Invariant Feature Transform (SIFT) is introduced in [104] [105]. It

computes the keypoints as the maxima or minima of the difference of the Gaussian

convolved images at different scales. Difference of the Gaussians, called as DOG, is

obtained by convolving the image with two different Gaussian filter at different scales

and taking the difference of the responses of these two convolutions. Some unstable or

low-contrast keypoints, and edge responses are eliminated. The final descriptor includes

local orientation information. It is distinctive and invariant to scaling, orientation, and

partially invariant to illumination changes and affine distortion.

A variation of SIFT descriptor is proposed in [82]. It applies Principal Compo-

nent Analysis (PCA) to the normalized gradient patch, instead of computing smoothed

weighted histograms. This method is called as PCA-SIFT. The performance of the lo-

cal feature descriptors are analyzed and compared in [118]. It was showed that SIFT

outperforms the other descriptors in most cases. According to this study [118], SIFT

is more distinctive than PCA-SIFT. Also, another variant of SIFT, called as GLOH,

is introduced in this publication. It is more robust than SIFT. However, it is compu-

tationally more expensive. Speed Up Robust Features (SURF) is keypoint descriptor

based on Haar wavelet responses [6]. It is faster than SIFT, because the image convo-

lutions rely on the integral images. In some cases, it is as robust as SIFT descriptor.

Keypoints can not only be computed in the 2D images, but also they can be

obtained in 3D point clouds. [99] explains a generalized version of SIFT, called as

RIFT, which can produce SIFT keypoints in a 3D Point cloud.
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A descriptor which relies on the principal curvatures of the point is proposed in

[30]. This method is called as Local surface patches (LSP). The quality of the point is

described by a Shape Index (SI). SI is considered as maximum and minimum principal

curvatures at that point. Also, SI frequencies of the neighbor points are accumulated in

a histogram. The point is declared as a keypoint, if its SI is outlier in its neighborhood.

The method explained in [211], called as ISS, computes eigenvectors in the

covariance matrix of the neighbor points centered at a point. Centroid is aligned with

the principal axes. The means of the curvatures are obtained from the surface which

is fitted to the aligned data. The quality of the keypoint is defined by this mean. [114]

follows a similar way to compute the keypoint quality. However, it only considers the

magnitude of the smallest eigenvalue, and the ratio between the eigenvalues.

The approach described in [207], called as meshDOG, is a scale invariant key-

point detector method. It computes the extrema points in the Laplacian response

images after applying a set of Gaussian Filters. A certain percentage of the extrema

points are thresholded by sorthing them according to the magnitude of the responses.

Non-stable responses are eliminated by using the Hessian operator. In this way, strong

corner points are selected as the keypoints.

SURF [6] is extended for 3D point clouds in [85], called as 3D SURF. The shape

is first voxelized in a volumetric cube. The quality of the keypoints are determined

by the determinant of the Hessian matrix of Gaussian second-order derivate which are

calculated by the box filters. [183] proposes a descriptor to encode the local features

of a 3D keypoint, called as Signature of Histograms of OrienTations (SHOT). The

histogram is built by the first-order differential of the normals of the points inside the

grid. The angle, between the feature point and each point within a grid is computed

and histogrammed.

[12] [158] [47] [2] compare and analyze the performance of 3D keypoint detectors

for the object recognition and retrieval tasks. The experiments are made by using

several synthetic and real datasets collected by different sensors, such as Laser Scanner,

and the stereo cameras. Their overall discussions show that [114] with its scale invariant
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version, called as KPQ-SI, MeshDOG [207], and ISS [211] gives the best performance

in terms of the repeatability. ISS is the most efficient keypoint detector. MeshDOG

outperforms the other methods when the scale is the issue. KPQ performs best among

the fixed scale detectors. Also, it is robust to noise in the data. Furthermore, MeshDOG

suffers if the data is not dense, for example on the Laser Scanner datasets.

(a) (b)

(c)

Figure 6.4: Matching the keypoints inside the object (it is a drill in this case) between

two frames. (a) displays the image at time t, (b) shows the color image

at time t+1 of the same image sequence. Detected SIFT keypoints are

drawn as red in both of the images. (c) illustrates the matched keypoints

between the images.
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6.2.2.2 SIFT based location estimation

Detecting the keypoints in a 3D point cloud is computationally more expensive

than detecting them in a color image. Hence, MM − Tracker prefers to compute

them in the color images instead of in the corresponding point clouds. SIFT feature

descriptor is used to estimate roughly the displacement of the object from time t to time

t + 1. There are several reasons why SIFT is chosen for this purpose. As mentioned

in the previous section, SIFT feature descriptor is invariant to uniform scaling and

orientation. Also, it is partially invariant to the distortion and illumination changes.

In addition, it is fast to compute, so it is suitable for MM − Tracker. However,

corresponding 3D point cloud of the image obtained from the depth image is used for

projecting keypoints to 3D space in MM−Tracker. The displacement of the keypoints

between the frames are computed in this 3D space to achieve more accurate estimation.

If the displacement of the keypoints would be calculated in the color image space, it

would be so sensitive to the scale changes between the frames. Hence, the keypoints

are detected in the image space, but the displacement of them is computed in 3D point

cloud space. The location of the object at time t + 1 is estimated by the following

steps:

1) For given two color images, It and It+1, whose time stamps are t and t + 1

respectively in the image sequences, their SIFT keypoints are computed:

Kt = S (It) , Kt+1 = S (It+1) (6.1)

where Kt is the set of the keypoints, and S is the operator to obtain SIFT keypoints

from the image It.
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(a) (b)

Figure 6.5: Taking the detected keypoints inside the object from the color image

space to 3D point cloud space. (a) displays the image at time t with the

keypoints drawn as red, (b) shows the corresponding point cloud and the

keypoints in it. The scene is rotated in the Point Cloud Viewer for better

display.

2) The keypoints which are outside of the object region are excluded only from

Kt:

K−t = {k(x, y) ∈ Kt : k(x, y) /∈Mt} (6.2)

Kt = Kt −K−t (6.3)

where k(x, y) is a keypoint in the image, Mt is the object region in the image.

3) The keypoints in Kt and Kt+1 are matched:

Kt, t+1 = M (Kt, Kt+1) (6.4)
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Kt, t+1 = {kt(x1, y1), kt+1(x1, y1)}, ...., {kt(xn, yn), kt+1(xn, yn)} (6.5)

where Kt, t+1 is the set of pairs of keypoints matched from Kt to Kt+1, and M is

the keypoint matching function. The detected keypoint inside an object for given two

consecutive images, and matched keypoints between them can be seen in Figure 6.4.

In this case, the object is considered as a drill.

4) Convert the depth images to 3D point clouds for timestamps of t and t + 1

in the image sequences. Then, compute the corresponding 3D points of all keypoints

in Kt, t+1:

k3D(x, y, z) = T (P, k(x, y)) (6.6)

K3D
t, t+1 = {k3D

t (x1, y1, z1), k3D
t+1(x1, y1, z1)}, ...., {k3D

t (xn, yn, zn), k3D
t+1(xn, yn, zn)} (6.7)

where T is the function to compute the corresponding point in the point cloud P for

a given keypoint k(x, y) in the image. As an example, Figure 6.4 shows the keypoints

inside the object in both color image and its corresponding 3D point cloud after this

step is applied.

5) The displacement of the object from the time t to the time t+1 is calculated

as the average displacement of the paired keypoints:

p3D
dis =

1

n

n∑
i=1

k3D
t+1(xi, yi, zi)− k3D

t (xi, yi, zi) (6.8)

where p3D
dis is the displacement of the object.

6) All object points, Mt, at time t are converted to its 3D representation, M3D
t ,

by using function T as in the Equation 7.6. Then, estimated location of the object at

time t+ 1, M3D
t+1 is computed by adding average displacement, p3D

d is, to each point of

M3D
t :

p3D
i = T (P, pi) where pi ∈Mt, p3D

i ∈M3D
t (6.9)

M3D
t+1 = M3D

t + p3D
dis (6.10)
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7) Since the camera calibration parameters are known, also estimated object

points in the image, Mt+1 can be achieved:

pi = T−(p3D
i ) (6.11)

where pi ∈ Mt+1, p3D
i ∈ M3D

t+1, and T− is the transformation function from the 3D

world space to the image space.

6.2.2.3 Feature Extraction and the Classifier

The human classifier, explained in the previous chapter, H − Classifier, uses

a point-wise shape descriptor, fs. This shape descriptor fuses the normal, ηi of a point

pi, its vectorial spatial distance, ∆v, and geodesic distance, GDi, relative to the middle

point, midB, of given bounding box. The experiments shows that this shape descriptor

powerful in the point-wise classification problem of the human. It is originally depended

on the middle point of the bounding box. However, it is extendable to other type of

the objects or conditions only by finding a way to calculate this middle point.

There is no a given bounding box around the objects in point-wise tracking

problem of the objects, so the middle point, midB, is considered as the center of the

mass of the object, M3D
t . It is calculated by the following formula:

midB =
1

m

m∑
i=1

p3D
i (6.12)

where m is the number of the points in M3D
t and p3D

i ∈M3D
t .

The shape descriptor, fs, can be incorporated as a cue to the proposed tracker,

MM−Tracker, by modifying midB as described. In addition to the shape information

of a point, pi, also the color of the point is added to the point-wise descriptor, fp, to

make MM − Tracker more robust. fp becomes:

fp = [ηx ηy ηz ∆x ∆y ∆z GDi r g b]
T (6.13)

where r, g, and b are red, green, and blue channels of the point, pi, in the color image

of a sequence.
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The positive, f+
p , and negative, f−p , samples are obtained from inside and outside

of the object, Mt, as in the training process of H−Classifier. In order to classify the

points in next image whose time stamp is t + 1, a tracking classifier, T − Classifier,

is trained with the samples obtained from a image set, Simg. This image set, Simg,

includes the images whose timestamps are t, t − 1, ..., t − n. This mechanism can be

considered as sliding a tracking window, wt, on the image sequences and the size of

the wt is n. Since it has been showed Random Forest algorithm performs best in the

previous section, it is chosen for T − Classifier as the framework.

In the classification process of the points in next image with time stamp t+1, first

the object location is estimated by SIFT based method explained in previous section.

The center of the mass of the object, midB, is computed according to the estimated

object location. Then, the points of this frame is classified by T −Classifier which is

trained by the samples obtained from previous image set of n frames.
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Figure 6.6: Overall diagram of multimodal tracker.
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6.2.2.4 Graph Cut Smoothing

T − Classifier provides a confidence score, Ci, of being in object region for a

point, pi, in the image. The details of this function is showed in Equation 5.10. In

this case, Ci is the decision distribution at the leaf node of the Random Forest Tree.

As discussed earlier, graph cut is great method to achieve more smooth results or to

eliminate noises in the final result mask of the object, Mt+1. The confidence scores, Ci,

can be used to set edge weights in graph cut. Therefore, MM −Tracker applies graph

cut technique as the last step in the tracking process by utilizing from Ci. In this case,

only single layer graph framework without incorporating any high level observation is

constructed. The Regional and Boundary terms of the graph cut is formulated as:

R(li) = − ln(pc(pi, li)) (6.14)

where R(li) is the regional term, li is the label of the point, pi, in the image, and pc(i, li)

is the likelihood of the point as it can be shown in Equation 5.21.

Bi,j = |Ri(”Object”)−Rj(”Object”)| (6.15)

where Bi,j is the boundary term penalty two neighbor points pi and pj. Ri(”Object”)

and Rj(”Object”) are the regional penalties of being in the object region of those

points.

6.2.2.5 Discussion on the Motion Model and Temporal Tracking

The purpose of proposed location estimation method is to be able to use it for

all type of the objects. It is simply a generic technique which do not include any

constraint in its motion model. It does not make any assumptions in the motion of the

object, so it moves only the center of the mass of the object according to displacement

of it between the frames in 3D world space. Even though, this type of the motion

model is not the best option to track a specific object, it is applicable for all kinds of

the object, such as rigid, articulated, and deformable.

The proposed motion model can be modified/updated for some certain type of

the objects, if their characteristics are known beforehand. For example, if the target

149



object which is tracked is a car on the road, the motion of the car is constrained

by some parameters, such as minimum turning radius of the car, maximum possible

speed can be made by the car, the slope of the car. In this case, a specific motion

model based on these constraints can be developed for the car. If the road is not

inclining in any direction, even one of the axes in the motion model can be dropped

and it can be considered that the car is moving on a 2D plane. After establishing

such a motion model, the movement of the car can be estimated by a RANSAC based

method computing the displacement among the keypoints. Also, this type of estimation

method can remove the outliers and/or mismatches in the keypoints. It can tolerate

the problems caused by the keypoint matching methods.

The motion model to track a human differs than tracking a car. In contrast

to rigid shape of a car, a human has articulated parts. These articulated parts can

move independently than each other. Hence, it is not a correct assumption that all

points in the human body will move under all conditions. For example, a human can

only raise up and/or wave his hands. In another case, he/she can walk on a planary

surface. Instead of using just one motion model for all points in the body, it seems

more reasonable to develop part based motion models for the human body.

Proposed tracking method does not utilize from Kalman or Particle Filter type

approaches. It seems as open to noise accumulation in the temporal displacement over

time. However, it is assumed that the classification and graph cut steps, explained in

the previous sections, will prevent from the error accumulation by working as some

kind of internal fixing steps. The training and the graph cut processes at the each step

of the tracking help to remove some incorrectly estimated object points by SIFT based

location estimation method, explained in the previous section.

6.2.2.6 Results

Several experiments were conducted to analyze and measure the performance

of the proposed MM − Tracker.
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In the first experiment, a scenario in which a ground robot is far away from

a hand tool which is a drill is established. In this scenario, the robot would like to

walk toward the drill to grab it by avoiding from the obstacles on its path. The robot

might make different movements because of the obstacles, such as left/right turns, while

walking. The target point of the robot finally it will arrive is near the drill. Properly

tracking the drill is important for the robot for several reasons. First of all, it shows

the path/way for it. Also, in order to be able grab the drill for a certain task, it must

recognize and know the orientation/position of the object relative to its arms to execute

correct motion plan. For this problem, tracking its low dimensional representation is

not enough, but more detailed point-wise representation is necessary. Alternatively,

this task can be done by detecting the drill at each frame and then refining detailed

borders of the drill whenever it arrives near of it. However, the detection methods

require to search entire scene which is computationally expensive and at the end the

refinement process might not be accurate.

Tracking and finally grabbing an object whenever the robots comes near it is

a common problem for the ground robots. The object might be any kind of hand

tool, house or kitchen equipments. Darpa Robotics Challenge [61], DRC, became the

inspiration to create this kind of scenario to test the described method. The tasks in

this competition that a robot is expected to execute ranging from driving a small car,

closing valves, climbing the ladder, to use some hand tools in dangerous, degraded and

human-engineered environments. In one of the tasks, the robot must accomplish using

a drill to open a hole on the wall.

A similar testing environment as in DRC tried to be created to record a dataset,

called as DRC-Track. The setup moved around the object while recording the data.

Different types of movements that the robot can do while walking is captured, such

as left/right turns, approaching to the target or walking away from it. Both of the

time aligned and same space registered depth and color images are saved. Also, their

color registered 3D point clouds were generated. The frame rate was set to about

20 per second during the recording. DRC-Track contains the depth and color images

151



Method Name Median Overlap Score

MM − Tracker (Only Color) 0.16
MM − Tracker (Only Shape) 0.74

MM − Tracker (No Location Estimation) 0.41
MM − Tracker 0.96

GC − Tracker − 3D (No Location Estimation) 0.23
GC − Tracker − 3D 0.48

Farneback [44] 0.28
Godec [54] 0.46

Table 6.2: Median overlap scores of the methods for DRC-Track dataset. Each row
specifies an experiment in which different combinations of the cues are used
in the method. For example, MM − Tracker (Only Shape) means that
color cue is removed from the point-wise descriptor, fp, of MM−Tracker.
MM − Tracker (No Location Estimation) means that the displacement
of the object between the frames is not computed for that experiment.
In the same way, GC − Tracker − 3D (No Location Estimation) does
not include the SIFT based location estimation between the frames for
GC − Tracker − 3D algorithm.

of 1900 frames. Total 76 ground-truths (one for every 25 frames) of the object is

manually generated by a human utilizing from a special pixel labeling software. These

ground-truths were used to compare the performance the tested methods.

The results of the MM−Tracker was compared to several other methods in the

same category which aim to track objects as point-wise. A dense optical flow method,

Farneback, is explained in [44]. In contrast to detecting a tracking a set of keypoints,

this method estimates the displacement of all points inside a mask in next frames. Its

good performance comparing to other types of the optical flow methods showed in [44]

and its dense point-wise tracking characteristics became the reasons to compare its

results to MM − Tracker.

Another method explained, in [54], is used in the experiments to analyze the

results of MM−Tracker. This method includes a self online learning of the object ap-

pearance to track it. Its online learning step is based on generalized Hough-Transform

which provides a rough estimation of the object. The rough segmentation of the object
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is given to the GrabCut [157] to obtain final point-wise mask of the tracked object. This

method outperforms some of the state-of-the-art methods to track non-rigid objects

for several challenging videos. This method will be called as Godec hereafter.

(a) (b)

(c) (d)

Figure 6.7: Examples of 2D and 3D distance penalty maps. (a) displays given color

image, and (b) its depth image. (c) shows its 2D distance penalty map

computed in 2D image space, and (d) its distance penalty map computed

in 3D. Please note that no penalty is assigned for missing depth data and

inside the object. Darker points in the maps have less penalty.

Also, ColorD GC-Tracker whose details are explained in Chapter 6.2.1 was

modified to be used in the comparisons. ColorD GC-Tracker was a single frame graph
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cut based tracker which does not estimate the location of the object in next frames.

In other words, it works as refinement method for given next frames. In addition, it

computes the distance penalty term in 2D image space to incorporate into its Regional

term in the graph cut formula. The same SIFT based location estimation approach,

described in Chapter 6.2.2.2, has been embedded to give the ability of predicting the

object in next frames. In this way, the produced object mask by the method at time

t-1, is shifted by the estimation method at time t.

Moreover, the availability of depth data provides the opportunity of computing

distance penalty map in 3D Euclidean space. In order to prepare a 3D distance penalty

map, first the 3D point cloud of the scene is generated. Then, Euclidean distance of

each point to the object is calculated. The sample distance penalty maps of two ways,

one is computed in 2D image and the other one is computed in 3D space, are showed for

a given image in Figure 6.7. As it can be realized in (d) image of this figure, even though

some points are close to the border of the object in the image space, they might have

large penalties due to their distances to the object in 3D space. ColorD GC-Tracker

with these two modifications will be called as GC − Tracker − 3D hereafter.

The performance of MM − Tracker was compared to GC − Tracker − 3D,

Farneback [44], and Godec [54] by fusing different cues in its point-wise descriptor, fp.

Two tests were conducted by removing the shape or color information from MM −

Tracker. Also, in another test, all cues were kept in fp, but the displacement of

the object between the frames were not computed for MM − Tracker. It is simply

assumed that the object does not move in the next frame. This test was conducted for

GC −Tracker− 3D in order to see how GC −Tracker− 3D performs in a refinement

way. In all of these tests, the trackers were re-started with the ground-truth masks

whenever they reached those ground-truth frames. In other words, the trackers were

re-initialized with the ground-truths per 25 frames. Their produced object masks at

the last frame were recorded to analyze their performances and to compute the overlap

scores with their ground truths. Some results of the trackers when they hit a ground-

truth can be seen in Figure 6.10. Total 76 overlapping scores were calculated in this
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way. Median overlapping scores of the methods can be seen in Table 6.2.

The distance penalty constant term, β, of GC − Tracker− 3D in Equation 4.6

is set to 1.49 and the constant term, λ, for weighting the smoothness term is set 0.1

in the experiments. It was observed that finding a good combination of these constant

terms, β and λ, sometimes becomes cumbersome. More importantly, using constant

weights cause problems in the tracking process, if locally different distributions of the

color exist around the object borders. For example, if the color discontinuity with the

background is not big near the bottom of the object, but it is large in the top side of

the object, playing with different variations of the constant terms do not improve the

results. This is mainly because of weighting the cues globally, every point in the scene

achieves same equal weight between the cues in GC − Tracker − 3D. The weighting

mechanism is explicit which is handled by the user for this method. Therefore, as it

can be seen in Table 6.2, GC − Tracker− 3D performed worse than MM − Tracker.

As it is expected, estimating the displacement of the object improved the results of

GC − Tracker − 3D by taking the median overlap score from 0.23 to 0.41.
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(t=0) (t=30) (t=60)

Figure 6.8: Sample results of MM − Tracker with and without location estimation

of the object over time. First row results show the outcome of MM −

Tracker without estimating the displacement at different time. Second

row displays the results of MM − Tracker if it includes SIFT based

location estimation method described in Chapter 6.2.2.2. In this example,

the camera makes first a right and then a left movement.

In contrast to GC − Tracker − 3D, MM − Tracker has an implicit learning

mechanism. It can figure out that which cue is more important and distinctive in

which part of the scene around the object. This ability is given to it by the vectorial

spatial distance, ∆v, part of its point-wise descriptor, fp. In the experiments, sliding

window size of MM − Tracker, wt, is set to 4. Only one tree was trained to reduce

the computational load. The max deep of the tree is set as 40. It was observed that

training one tree produced sufficiently good results. MM −Tracker which includes all

cues and SIFT based location estimation outperformed all other methods by having
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highest median overlap score 0.96. Also, the experiment showed that the shape related

cues in the descriptor, fp, is so powerful. Even it may produce remarkable results in

the absence of the color information. However, the color itself is enough to track the

object in front of background which share similar color information with the object.

Terrible performance, only 0.16 overlapping score, is showed by MM − Tracker, if it

does not integrate shape cues. It was concluded that estimating the displacement of

the object is crucial for MM −Tracker. In the absence of the location estimation, the

performance dropped from 0.95 to 0.41. One of the example case which demonstrates

the mistracking of the object when the displacement is not integrated to MM−Tracker

can be see in Figure 6.8. In this example, the camera first moved to the right. It caused

the tracker to loose the object location and stick on the wall. Then, the camera made

a left movement. The method kept track a part of the wall which has similar color

cue. However, SIFT based location estimation employed in MM − Tracker helped to

continue to track the object over time as can be seen in the second row of Figure 6.8.

Godec [54] performed slightly worse than GC − Tracker − 3D in this test. Since the

background has same similar color information as the object has, and Godec does not

use any 3D related features, this performance of Godec can be expected.
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(t=0) (t=30) (t=60)

Figure 6.9: Sample results of MM − Tracker with and without incorporating the

color information at time t=0, 30, and 60. First row shows the results of

MM − Tracker without fusing the color in its point-wise descriptor, fp.

Second row displays the results of MM − Tracker when all the cues are

incorporated.

Figure 6.9 demonstrates a case when the color information helps MM−Tracker

to track the object properly. In this case, the changes in the shape of the object because

of the camera rotation, lead to loosing some part of the object. Only shape related cues

started becoming not enough when the camera was rotated over time. First row results

display that MM−Tracker sticked only middle part of the object not by grabbing the

top and bottom part of the object. However, the color information which is associated

with the point-wise shape related cues helped MM − Tracker to work more robust in

the case of noticable shape changes.
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Raw Image GC − Tracker − 3D MM − Tracker Farneback [44] Godec [54]

Figure 6.10: Sample results of different tracking methods whenever they hit a ground-

truth in DRC-Track dataset. Column headings show the name of the

methods. If the object was lost by the tracker, there is no green colored

mask.

Dense optical flow method of Farneback [44] utilizes only from the visual cues.
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Method Name Median Overlap Score

MM − Tracker (Only Color) 0.18
MM − Tracker (Only Shape) 0.82

MM − Tracker (No Location Estimation) 0.73
MM − Tracker 0.93

GC − Tracker − 3D (No Location Estimation) 0.37
GC − Tracker − 3D 0.43

Farneback [44] 0.45
Godec [54] 0.61

Table 6.3: Median overlap scores of the methods for HandShaking data set. Each row
specifies an experiment in which different combinations of the cues used
in the method. For example, MM − Tracker (Only Shape) means that
color cue is removed from the point-wise descriptor, fp, of MM−Tracker.
MM − Tracker (No Location Estimation) means that the displacement
of the object between the frames is not computed for that experiment.
In the same way, GC − Tracker − 3D (No Location Estimation) does
not include the SIFT based location estimation between the frames for
GC − Tracker − 3D algorithm.

Therefore, MM−Tracker outperformed its results by a factor of 2.6 at the level of the

median overlap scores. It can be realized in Figure 6.10 that the results of Farneback’s

method do not seem as dense, but some sparse points. The reason of this situation is

that some computed displacements of the points inside the object hit same points in

the next frame, so it causes the aggregation of the points to only one point.

Another experiment was conducted to analyze and compare the performance of

MM − Tracker for the articulated and deformable objects. Since the proposed SIFT

based location estimation is a generic approach for all types of the objects, it does not

consider the deformations and part based movements to determine local displacements

of a group of the points inside the object. For this purpose, a short video of two persons

approaching to each other, shaking their hands, and then walking away in front of a

complex background was recorded. This dataset, called as HandShaking, includes 220

frames of the color and depth images. Its video frame rate is about 20 per second.

In the same way as it was generated for DRC-Track dataset, a ground truth per 25
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images was labeled manually.

The tested trackers were restarted at the ground truth images as it was per-

formed in the previous experiment. The result masks of the methods at every ground

truth were saved for the comparisons and analysis. Median overlap scores of the meth-

ods for this dataset can be seen in Table 6.3. MM −Tracker produced again the best

results in this experiment. It was observed that in the case of no location estimation,

the results of MM − Tracker for this dataset is considerably higher than DRC-Track

dataset. It is mainly because of more situations where the object does not move so

much or make movements towards the camera, such as during the hand shaking of the

persons, at the start and end of the video. Also, the same reasons explain the better

performance of Farneback ’s method [44]. In this experiment, Godec [54] performed

better than Farneback and GC − Tracker − 3D. It can be said that Godec’s online

learning step to build the object model works better than the refinement procedure

inside of GC − Tracker − 3D. Some sample results of the trackers recorded at the

frames which have ground truths can be seen in Figure 6.13.
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(t=0) (t=1) (t=2) (t=3) (t=4)

Figure 6.11: The effect of the proposed location estimation method during tracking

of the person for a special case in which the hardware system stalled

between t=0 and t=1. It caused a large skip at the object location.

Second row displays the result of MM−Tracker without utilizing from

the SIFT based location estimation method. Last row shows the results

of MM −Tracker which includes the location estimation of the object.

A special and rare case was encountered during recording of HandShaking dataset.

At one point of recording, the hardware stalled due to so rare buffer problem in the

sensor setup. This kind of conditions can always be expected in real time robotics

systems which require to process high bandwidth data. It is so useful, if the employed

method can handle these kind of issues in software level. In this case, there had been

large change at the location and pose of the human between two frames. Therefore,

it was decided to analyze this case separately. Figure 6.11 demonstrates the results

of MM − Tracker with and without having proposed SIFT based location estimation

method. The stall occurs between time=0 and time=1. As it can be seen in the second
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row of the Figure 6.11, not employing the estimation mechanism to MM − Tracker

caused loosing the person in the next frame. However, the location estimation helped

MM −Tracker to capture most part of the person at time=1, even though its pose at

the foot and arm level changed. Also, MM − Tracker was be able to grasp the other

parts of the body at subsequent frames, after time=1.

It was investigated during this experiment that MM − Tracker is sensitive to

the local motions inside of the object. As it can be noticed in the fourth row of Figure

6.13, MM − Tracker was unable to track some parts of the hand and the arm of the

person. If the whole body of the person does not move but only his arm makes local

movement, a generic SIFT based location estimation method is not enough to handle

these types of the local motions. Also, same problem occurs when the motion is not

homogeneous for the all points of the body. For example, when a person is walking the

direction and magnitude of the motion in the head or torso of the person is different

than in the level of the feet. In order to capture and integrate these type of motions

into MM − Tracker, object specific estimation methods can be developed.

Figure 6.12 displays the point-wise confidence scores of given images produced by

Random Forest Classifier and their final results obtained from graph cut step employed

in MM − Tracker. It can be seen in the final results that some points which have

weak scores inside the objects were included into the result masks. Moreover, some

non-connected weak points were eliminated by graph cut. These improvements can be

explained by the ability of graph cut which can combine smoothness and data terms

in one framework.
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Raw Image Confidence Scores Graph Cut Result

Figure 6.12: Sample confidence scores and their result masks produced by graph cut

in MM − Tracker.
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Raw Image GC − Tracker − 3D MM − Tracker Farneback [44] Godec [54]

Figure 6.13: Sample results of different tracking methods whenever they hit a ground-

truth in HandShaking dataset. Column headings show the name of the

methods.

6.3 Conclusion

In this chapter, two different types of point-wise tracking methods are proposed.

Their results are compared to the existing methods and analyzed. In the first proposed

approach, it is assumed that the object is not moving, so the location of the object

is not estimated over frames, but the result mask produced in last frame is carried
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without changing its location to the next given image. A graph cut based refinement

method is developed to refine the carried mask iteratively. This method, called as

ColorD GC-Tracker, combines the color and the distance information to the object

fuses in its Regional term. It adaptively switches between the color space under differ-

ent illumination conditions over time in order to work in most distinctive color space.

Moreover, it employs dynamic distance penalty weighting mechanism which provides

the ability of capturing distant object points around the border, if the selected color

space really distinctive.

The performance of ColorD GC-Tracker is analyzed by using three different

datasets which include deformable and complex shaped objects, such as trail, the head

and hand of the people. The effects of incorporated color cue and distance penalty

information are quantified in the experiments. Its results are compared to a same

category SVM based tracker and a low dimensional trail tracker. The results of ColorD

GC-Tracker outperformed the outcome of the other methods for all three datasets. It

was observed that if the location of an object does not change so much, several iterations

of ColorD GC-Tracker can produce globally optimal solutions.

On the other hand, a novel point-wise multimodal object tracker, MM−Tracker,

is described. This tracker estimates the displacement of the object in a generic way

from one frame to another by utilizing from the matchings of SIFT keypoints. It

computes the center of the mass of the object by taking the mean of all displacements

between keypoints. In this way, it does not estimate the local motions inside the object,

but it assumes that all points move in the same direction and magnitude.

MM −Tracker utilizes from a powerful point-wise shape descriptor in addition

to the color cue of the object. This shape descriptor consists of vectorial spatial distance

and geodesic distance information relative to the center of the mass of the object.

Also, it includes the normal of the point. The availability of depth data provides

computing the shape descriptor in 3D Euclidean space. Positive and negative point-

wise descriptors are trained by Random Forest algorithm in MM − Tracker. In order

to achieve robust performance, not only the samples obtained from the last frame, but
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also the descriptors coming from last n frames can be integrated. A graph smoothing

process is applied to produce better results.

The performance of MM − Tracker is compared two other point-wise trackers.

In one of them, ColorD GC-Tracker is upgraded by a 3D distance penalty map which

computes the Euclidean distance to the object in 3D space. Also, the same SIFT

based location estimation technique is added to ColorD GC-Tracker. Other compared

method is a powerful dense optical flow algorithm.

Two different experiments are performed to quantify and analyze the results of

MM − Tracker. One of the dataset includes a complex shaped hand tool, which is

a drill, and the other dataset consists of two persons approaching each other to shake

their hands and then walking apart. In both of the experiments, MM − Tracker

showed the best performance. It was investigated that generic SIFT based motion

estimation method is powerful, if the object is not highly deformable. Also, even if

the object demonstrates local motion changes, MM − Tracker performs better than

compared dense optical flow method.
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Chapter 7

CONCLUSION

7.1 Future of Computer Vision

In last decade, we have started seeing some computer vision applications as

the home consumer products, such as Kinect, like.com, and incogna.com. There were

some other companies which produce vision applications for specific consumer groups

for years. However, there had been no product which addressed the need of every

person until the launch of like.com or incogna.com which are the websites allow image

based search. Partially, Kinect can get into this category by interesting the people

from the age of 7 to 70 years old.

Why these kind of products were waited to be launched until the last decade?

Examining the reasons of this question can enlighten the possible market grow of

computer vision applications for the home consumers in the future. It can be clearly

seen that the advances in some other fields of the technology effects the opening of

new markets or developing new products. For example, the spread of Internet and

web on the earth triggered the need of text based and image based search engines,

so the accumulation of the research done in image retrieval field turned to a image

based search website, like.com which was acquired by Google in its first years for 100

million dollars. Another impact factor can be the advances in the CPU technology

which allows more computational power to create the solutions for a such expensive

task.

Some other examples can be given before discussing about Kinect. A similar

trend can be observed in the launch of youtube.com. The main reason in the opening of

such an industrial market was the advance of video streaming technology and Internet
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infrastructure. After Adobe launched the best video streaming server, called Adobe

Flash Media Server, and its player became available in most of the computers on the

earth, youtube had opportunity to fill in the gap of video sharing problem on the web.

Indeed, dynamic data update feature coming with Ajax for the web sites, called as the

creation of Internet 2, was another reason why youtube was not investigated before

2005, even though the research community offers really good video codec algorithms.

Kinect was launched in the last quarter of 2010. It is the first device which

allows the home users to play computer games by interacting with their gestures and

movements. This was a time-breaking product for the computer vision field. It created

a new market and also affected the research community by investigating to develop new

vision algorithms which use depth data obtained from its IR camera. Therefore, its

impact happened in two ways, to the industrial market and to the research community

of the vision. The main underlying reason, which also answers the question of ”why

did such a huge market arise in 2010?” , is the advancements in the sensor technol-

ogy. Kinect employs an IR camera to measure the depth of the points into scene. It

opens a door to produce new, robust, complementary vision based software. There-

fore, Microsoft research team was be able to develop human body gesture recognition

algorithms which were not done robust enough by using only color camera to deliver

in a home consumer device until that point. And again, the advancement in computer

hardware industry allowed them to train their method using 1000 core CPUs.

Improvements in the sensor technology affected the autonomous car field. It

was a dream thought to develop a fully autonomous car 20 years ago. However, we

can see an autonomous car, Google car, nowadays which is be able to drive 300,000

miles by itself without having any accidents in real traffic. Google continues working

on this project to change the roads of the future. This car employs a Velodyne LIDAR

whose price is about 50,000 dollars. This sensor provides a 3D point cloud of the scene

to help the car for perceiving its surrounding. A concrete effect of using this sensor

can be seen in 2004 and 2005 Darpa Grand Challenge. No team was used this kind of

LIDAR in 2004. In my opinion, it was a big factor why no team was be able to finish
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the competition. In 2005, Stanford team, Stanley, and some other teams updated their

sensor setup by adding a Velodyne LIDAR. Stanley won the Grand Challenge. Also,

in 2007 Darpa Urban Challenge, some teams such as CMU’s Tartan Racing removed

their LIDAR setup, and replaced a Velodyne LIDAR which shows that they realized

the need of a reliable LIDAR which provides dense 3D data of the environment. To

sum up, Velodyne LIDAR changed the way of the competition and the research which

was conducted for that competition by the teams.

In addition, one more point can be mentioned about this topic. One of the factor

which might improve the accuracy of a vision method is the availability of computa-

tional power. Parallel computation allows to reduce running time of some algorithms.

For example, in order to detect a human, multiple threads can decrease the detection

time by dividing the image space into several pieces to assign a thread for each of them.

Or the number used particles in a Particle Filter tracking method can be increased

in the availability of more computational power. In this way, more particles might

improve the accuracy of the method. NVIDIA which is a company produces GPUs

makes remarkable amount of investment to develop some computer vision products,

especially for autonomous cars, by focusing on providing more computational power

for the algorithms.

On the other hand, even just adding a sensor to an existing device opens new

huge markets. Fore example, adding a camera to the cell phone created new software

companies, such as Instragram which was acquired by Facebook for 1 billion dollars.

Or it causes exiting market to grow, such as the video conference features of Skype

and whatsApp. WhatsApp has been acquired recently by Facebook for 16 billions

dollars. Also, it affected the research in the field of the imaging and computational

photography. The research budget of these fields have been increased in last years due

to availability of the cameras in cell phones.

It can be investigated from these examples that the advancements in the sensor

technology effects the industrial market and at the same time the research community.

I believe in that we are going to see new computer vision applications which uses
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multiple different types of the sensors in the future. This applications will generate

new companies, correspondingly new billion dollar markets. Dell offers an option for its

Alienware laptops to add an IR emitter to allow playing 3D games by paying extra 100

dollars. The annual market of Alienware laptops is millions of dollars. Can someone

tell that a cell phone company or a PC company will not make the same offer in the

future for adding the Infrared cameras as Kinect has? Imagine that a cell phone or your

PC employs a sensor which provides the depth of the points. In that condition, new

vision applications will be delivered to the market causing to establish maybe billion

dollar companies.

Combining the advantages of different sensors in the same application generates

new research problems. How much is going to be trusted to sensor-x or sensor-y?

Which cues will be obtained? How are those cues which have different scales will be

weighted by the algorithm? These are the fundamental questions need to be solved.

Additional questions which are specific to the application type might raise. They need

to be handled in the application context.

The idea of preparing the vision algorithms of the future which fuse multiple

sensor data to increase the robustness as they can be employed to the consumer devices

was one of my motivation for writing this thesis. I believe in that multimodal data

fusion will be a big problem later as the technology produces new sensors. Current

research community of the computer vision should get prepared for those incoming

problems.
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Figure 7.1: The effects of the some advancements in technology in the last decade.
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7.2 Key Observations

The following key observations can be highlighted after extensive experiments
of the proposed algorithms in this thesis:

• Graph cut is powerful framework to incorporate multiple cues which can be differ-
ent types, such low and high level observations, jointly. Boundary and Regional
terms of graph cut can be set by using different types of the cues. For example,
learning the color appearance of the human is not possible, because of the infi-
nite color variations of the clothes. Therefore, the color is not incorporated into
the point-wise human descriptor to refine the low dimensional shape in Chapter
5. However, Boundary term of graph cut provides the ability to fuse the color
discontinuity to the proposed algorithm. Thus, the performance of the method
increased. It enabled to classify some points which do not have valid depth data
inside the body.

• On the other hand, the performance of the graph cut highly depends on the
quality of the fore/background models to set the Boundary and Regional terms.
In this context, quality implies how good the models represent the object and
the background. Only possible way to boost the accuracy of the results to top
of the quality of the models is selecting a good value to set the relative influence
between the Boundary and Regional terms in graph cut. In some cases which
graph cut formula includes multiple constant terms to set the weight of multiple
cues or the terms, it becomes cumbersome to find a good combination values to
set these constants. Similar situation was encountered in the experiments of the
graph cut tracker described in Chapter 6.2.1. In that case, it was tried so hard
to find a good combination for two constants of the graph cut to set the shape
influence and pairwise interactions.

• It is investigated that fusing multiple cues obtained from different sensors in-
creases the accuracy of the methods. Especially, multiple different types of sensors
form a robust and complementary architecture. This type of construction allows
utilizing different advantages of the sensors in the software level. For example,
bringing geometry from the LIDAR and visual silhouette information from the
color camera created a robust human classifier as described in Chapter 2. Also,
fusing shape cue obtained from IR camera and color cue from the color camera
in proper way increased the accuracy of the refinement and tracking methods in
Chapter 5 and 6. Multimodal feature vectors do not affect only the accuracy of
the method, but in some cases, such as in proposed human detection algorithm, it
reduce the computational time. This opens a door creating real-time applications
for the consumer products.

• Combining multiple different kinds of cues in one task require choosing a care-
ful way, such as determining which cue is discriminative and representative in
which part of the scene or how much it is important and incorporated for those

173



regions into the system is a crucial observation to develop robust algorithms. In
other words, setting the weights of the cues locally according to their dominance
improves the accuracy and robustness of the methods. These methods can be
either a refinement or tracking algorithm. In the proposed human shape refine-
ment method explained in Chapter 5 and tracking method described in Chapter
6, basically the power of Random Forest machine learning technique if a smart
local shape information is given with associated color and structure cues is inves-
tigated. Unlike SVMs or a k-means based fore/background model construction
methods are not be able to discriminate or weight the importance of the cues
dynamically and locally. An example of this case can be highlighted for the re-
finement of human shape. At the bottom level of the provided bounding box
the normal of the points are much important than the depth cue. Or at the top
level of the box, the depth of a point is more discriminative. SVMs or any kind
of SVMs inherited machine learning method do not supply a way to learn or
evaluate the characteristic of weighting cues dynamically within a feature vector.
However, a technique which offers a tree structure based on evaluating the cues
within a vector in a cascaded manner provides this ability.

7.3 Future Work and Limitations

7.3.1 Multimodal Human Classifier

The proposed multimodal human detection algorithm can be extended for mul-

tilayer LIDARs. It is demonstrated that even one single layer structure information

from the scene drastically improves the accuracy of the detection comparing to the

single model algorithms. Multilayer LIDARs provide several layers of structure infor-

mation. One of the is Ibeo Alasca XT which produces four vertical layers laser beams

with an aperture angle of 3.3◦. Another one is Velodyne HDL-64E which splits 64

layers of laser beams. The sample data of these two sensors can be seen in Figure 7.2.

Some pedestrian detection algorithms which use these type of the sensors are proposed

in [143] [53].

Utilizing from multiple layer geometric information can improve the detection

rate of proposed multimodal tracker in Chapter 2. In the same way of extracting single

layer geometric information from human body, several layers of these information can

be combined in one proposed human descriptor. The association of geometric cues from

multiple parts of the human body can form a better geometric descriptors. Or multiple

174



human descriptors which includes only one layer of geometric cue can be formed. Each

of these descriptors are asked to the human classifier at run time. The evaluations of

each of these tests might be in a cascaded way, or by aggregating the scores of each

test.

Proposed multimodal human detection algorithm is not developed to handle

the partially occluded cases. Multilayer LIDAR sensor integration to the system can

help to detect partially occluded cases. In occlusion scenarios, even if one layer of the

LIDAR hits occluded part of the body, another layer might hit body points, so that

this layer can detect the human correctly.

On the other hand, similar approach which relies on fusing one slice of geometric

information from human body and visual cue in one feature vector can be extended to

detect the human in indoor scenes by using depth and color images provided by Kinect.

In this case, just as the artificial LIDAR data is obtained in the training process of

the proposed classifier, multiple slices can be taken from the depth image to form the

geometric descriptor. Since the computation of the proposed geometric descriptor is

so fast, a fast and accurate human classifier can be developed for indoor scenes. In

addition, the search space in the images can be constrained by testing random piece of

depth slices taken at different orientations.
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(a)

(b)

Figure 7.2: Appereance of multilayer LIDARs data. (a) shows the Ibeo Alasca XT

data projected on to the color image and its visualized terrain map by

a software taken from [69]. (b) displays the data of Velodyne HDL-64E

[191].
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7.3.2 Refinement and Recoginition with Graph Cuts

Graph cut method has been extensively used in the object segmentation, stereo

matching, refinement and some tracking problems in the computer vision field. It

demonstrates remarkable results in all of these vision tasks. However, it has not show

up in the keypoint matching side of the object recognition. There are various ways to

find the matches between the keypoints. Most of the methods collects some local infor-

mation around the point and try to match the keypoints by considering the similarity

between these local information. This process can be called as one-to-one keypoint

matching. However, the problem can be converted to n-to-n keypoints matching task.

In other words, matching n keypoints from one set to n keypoints from another set by

incorporating pairwise relations or interactions.

This problem looks like labeling each keypoints from set-one to another key-

point from set-2 by considering pairwise relations in the system. For example, spatial

proximity, especially in 3D point clouds, is an important pairwise cue which could im-

prove the accuracy of the matches. Such a work which considers the spatial proximity

between the keypoints is described in [155]. This work is not based on the graph cuts.

It is possible to convert this problem to a graph cut structure and formulate it by two

terms, regional and boundary in the graph cut formula. Spatial proximity can play a

role to form the pairwise boundary penalty. The regional term can be weighted by the

matching scores of the pairs in two different sets. The powerful and fast approximation

method embedded in the graph cut might minimize this equation which represents the

keypoint matches.

Furthermore, as it is outlined in Chapter 3, there is no existing work to set

relative influence between regional and boundary terms of the graph cut by utilizing

from machine learning techniques. Current approaches set this influence parameter

without learning it by a training process. A generic way of setting this parameter can

be developed by training a neural network type classifier for certain type of the image

sets or scenes.
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7.3.3 Low Dimensional Human Shape Refinement

In this thesis, the approaches to the refinement task do not consider obtaining

some cues from the internals of method which provides the low dimensional shape.

The purpose was to develop generic refinement methods independent of the algorithms

which stay on the low dimensional space. This approach can be explained with an

idiom, ”Take it, use it”. It means that low dimensional shape is obtained from the

provider, and used in the refinement method without touching back to the provider

method. However, for specific types of the objects, such as a human, also some cues can

be incorporated by going deep into the details of the low dimensional shape provider.

For example, Humanising GrabCut [56] retrieves some features from HOG classifier to

incorporate into its segmentation process. In a similar way, the proposed method can

be extended for specific types of the underlying low dimensional shape providers. In

addition to a bounding box output of the method, its descriptors for some points can

be transferred to the refinement process in order to improve the accuracy. This type

of work is left for the future.

The proposed low dimensional human refinement method does not have an

ability to rectify the problematic outputs of the providers. If provided bounding box

does not include a human, the human is outside of the box or partially inside the box,

it can not refine all points of the human body. It only considers the human body points

inside given bounding box. Same limitation also exists for GrabCut [157]. It segments

the objects points just inside the bounding box. However, underlying method in our

proposed classifier does not limit testing the points outside of given shape. This special

issue can be addressed by removing virtual classification border which is the sides of

the bounding box. All points in the scene can be classified by the method.

In addition to the estimated ground plane, other high level observations such

as estimated walls, or detected objects can be incorporated into the multi-layer graph

framework of the human refinement method. More interestingly, multiple bounding

boxes which includes detected people are tried to be refined by the same method. This

might be helpful to reduce false positive positives which originally belong to a second
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human.

7.3.4 Multimodal Complex Object Tracking

The proposed multimodal tracking method, MM−Tracker, in Chapter 7, does

not include motion models specific to the objects. Therefore, it is sensitive to the

local motions inside the objects. It has been observed that this limitation does not

cause a big issue for tracking the complex rigid objects, such as a drill. However, local

motions in some parts of deformable or articulated objects caused mistracking of some

points where local motion exists at high range. MM − Tracker is be able to capture

those points back if the movement of the object is not so big. In these kinds of cases,

MM − Tracker works as an iterative refinement process at subsequent frames.

In order to make MM − Tracker more robust to the local motions, one of

the solution would be to employ motion models which are specific to the tracked

objects. Another way can be to improve the SIFT based location estimation method.

Instead of estimating the movement of the object averaging the displacement between

the keypoints, a point-wise weighting method which considers the spatial distance

to a keypoint can be developed. Basically, the displacement of the points between

two frames are computed according to their distances to the keypoints. Or another

approach could be to use an off the shelf dense optical flow method such as [44], but

it would require more computational power and again to develop a way to handle the

estimation of a group of the points to a single point in the next frame by [44]. This

problem seem as an interesting one to work on it in the future.

On the other hand, fusing offline and online shape learning to MM − Tracker

can be interesting idea for specific types of the objects, such as a human. In Chapter 6,

the shape of the human is learned by a classifier offline from a set of the images. This

information can be incorporated while tracking a human online. Since the shape of

the tracked human can be different than the learned generic human shape, developing

a way to fuse two shape information is necessary. This process might require some

changes at the deep level of learning algorithm.
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Appendix A

IMAGE MODIFICATIONS

In order to comply with the PhD Thesis requirements of University of Delaware,

the faces of the people are blurred in some images. This has been done using the

smudge tool of open source GIMP (version 2.82) image editor. Please note that these

modifications were made on the result images of the proposed algorithms in this thesis.

The proposed algorithms take the original images as the input without modifications.
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Appendix B

PERMISSIONS

The following permissions are for using some images of the people in this thesis.

They appear in Figure 1.1, 4.5, 6.1, 6.3, 6.11, 6.12, 6.13.
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4/15/2014 University of Delaware Mail - About My image

https://mail.google.com/mail/u/0/?ui=2&ik=dceeadbd62&view=pt&cat=image%20permissions&search=cat&msg=1452e4c13ec831d6&siml=1452e4c13ec831d6 1/1

Mehmet Kocamaz <kocamaz@udel.edu>

About My image

Abdullah Kaplan <kaplana@udel.edu> Fri, Apr 4, 2014 at 3:51 PM
To: kocamaz@udel.edu

Hello Mehmet,
I hereby grant you permission to use my images and videos in your dissertation and research publications.
Abdullah Kaplan

200



4/15/2014 University of Delaware Mail - Video/Image permission

https://mail.google.com/mail/u/0/?ui=2&ik=dceeadbd62&view=pt&cat=image%20permissions&search=cat&th=1455274cd74a2c2e&siml=1455274cd74a2c2e&si… 1/2

Mehmet Kocamaz <kocamaz@udel.edu>

Video/Image permission
2 messages

Mehmet Kocamaz <kocamaz@udel.edu> Fri, Apr 11, 2014 at 4:22 PM
To: reisslein@asu.edu

Hello Professor Martin Reisslein,
I am in the process of submitting my dissertation to the grad office and they require a written approval for using
videos/images from one of your YUV Video Sequences in my dissertation for the research purpose. 
I would be glad if you could send this as an e-mail, which I will include in my dissertation. 
Thank you.

Best Wishes,

-- Mehmet Kocamaz
University of Delaware
Dynamic Vision Lab

Martin Reisslein <reisslein@asu.edu> Sat, Apr 12, 2014 at 10:03 AM
To: Mehmet Kocamaz <kocamaz@udel.edu>

Hi Mehmet,

 

sure, you have my permission. These sequences are openly available for research.

 

You may also find interesting, that we have extensive tutorials on video traces that employ these and longer
sequences, see

http://mre.faculty.asu.edu/ModEnc.pdf

http://mre.faculty.asu.edu/H264VidTraceTut.pdf

 

Martin

 

--
Martin Reisslein

Professor

School of Electrical, Computer, 

and Energy Engineering
Arizona State University
Goldwater Center, MC 5706
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4/15/2014 University of Delaware Mail - Permission

https://mail.google.com/mail/u/0/?ui=2&ik=dceeadbd62&view=pt&cat=image%20permissions&search=cat&msg=1453a1fbecb27c0c&siml=1453a1fbecb27c0c 1/1

Mehmet Kocamaz <kocamaz@udel.edu>

Permission

Alparslan SARI <asari@udel.edu> Sun, Apr 6, 2014 at 10:58 PM
Reply-To: asari@udel.edu
To: Mehmet Kocamaz <kocamaz@udel.edu>

Dear Mehmet, 

I hereby grant you permission to use my images and videos in your dissertation and research publications.

Sincerely yours,
Alparslan Sari

-- 
Alparslan SARI
M.Sc,   Computer and Information Science'08
M.Sc,   Bioinfomatics and Computational Science, Concentration in Computational Sciences'12
M.Eng, Software Engineering'13
University of Delaware
Newark,DE

http://www.cis.udel.edu/~asari/
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4/15/2014 University of Delaware Mail - permission

https://mail.google.com/mail/u/0/?ui=2&ik=dceeadbd62&view=pt&cat=image%20permissions&search=cat&msg=1453d71c37f40d41&siml=1453d71c37f40d41 1/1

Mehmet Kocamaz <kocamaz@udel.edu>

permission

Tuna Demir <tunad@udel.edu> Mon, Apr 7, 2014 at 2:27 PM
To: kocamaz@udel.edu

Hello Mehmet,

I hereby grant you permission to use my images and videos in your dissertation and research publication. 

Tuna Demir
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4/15/2014 University of Delaware Mail - Permission for my picture

https://mail.google.com/mail/u/0/?ui=2&ik=dceeadbd62&view=pt&cat=image%20permissions&search=cat&msg=14542b462207877a&siml=14542b462207877a 1/1

Mehmet Kocamaz <kocamaz@udel.edu>

Permission for my picture

Cuneyt Kilicaslan <ck1704@nyu.edu> Tue, Apr 8, 2014 at 2:58 PM
To: kocamaz@udel.edu

Hello Mehmet, I hereby grant you permission to use my images and videos in your dissertation and research
publications. -- Cuneyt Kilicaslan
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