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We present a general system with a focus on addressing three events of the 2013 DARPA Robotics Challenge
(DRC) trials: debris clearing, door opening, and wall breaking. Our hardware platform is DRC-HUBO, a
redesigned model of the HUBO2+ humanoid robot developed by KAIST and Rainbow, Inc. Our system allowed
a trio of operators to coordinate a 32 degree-of-freedom robot on a variety of complex mobile manipulation
tasks using a single, unified approach. In addition to descriptions of the hardware and software, and results
as deployed on the DRC-HUBO platform, we present some qualitative analysis of lessons learned from this
demanding and difficult challenge. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

Previous DARPA-sponsored competition programs in
robotics have promoted research in topics as diverse as
learning for ground vehicles (Jackel et al., 2006), legged
locomotion (Pippine, Hackett, & Watson, 2011), and au-
tonomous manipulation (Hackett et al., 2014); however,
the 2013 DARPA Robotics Challenge (DRC) is most sim-
ilar in scope to the 2004–2005 Grand Challenge and the
2007 Urban Challenge, which helped bring about a rev-
olution in the field of autonomous driving (Buehler, Iag-
nemma, & Singh, 2007, 2009). Like these broadly scoped
challenges, the DRC is aimed at producing robotic systems
that integrate expertise from nearly every subdiscipline of
robotics, and it presents valuable opportunities to apply
both established and novel research methods to real-world
scenarios.

In this paper, we document a general-purpose system
aimed at addressing three events of the DRC with the DRC-
HUBO robot: debris removal, door opening, and wall break-
ing. The system allows a small number of human operators

Direct correspondence to: Sungmoon Joo, sungmoon.joo@gatech
.edu

to teleoperate a 32 degree-of-freedom humanoid robot to
perform a wide variety of tasks in the face of high com-
munications latency and low bandwidth. Our high-level
approach achieves generality in part by minimizing the
amount of task-specific knowledge embedded in the sys-
tem, and by allowing operators to coordinate high-level
behavior through interpolation between key poses of the
robot, which respects balance and pose constraints.

The authors of this paper form just a small subteam of
the multi-institution DRC-HUBO team, led by Dr. Paul Oh
of Drexel University. Due to the team’s distributed nature,
participating institutions each formed subteams focused on
one or more individual DRC events. For information about
our colleagues’ approaches, we refer the reader to their ex-
isting publications related to the DRC (Alunni et al., 2013;
Dang, Jun, Oh, & Allen, 2013; Zhang et al., 2013; Zheng et al.,
2013).

The remainder of this paper is organized as follows:
in Sections 2 and 3, we provide an overview of the system
hardware and software, respectively. In Section 4, we doc-
ument the results of trials at the DRC as well as results of
our own in-house testing. Qualitative analysis of some key
failures and successes are presented in Section 5. Finally, we
conclude in Section 6.
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Table I. Development of the HUBO series.

KHR-3/ KHR-4/
KHR-1 KHR-2 HUBO Albert HUBO HUBO2 HUBO2+ DRC-HUBO

Model (2002) (2004) (2005) (2005) (2008) (2011) (2013)

Weight 48 kg 56 kg 55 kg 57 kg 45 kg 43 kg 52 kg
Height 120 cm 120 cm 125 cm 137 cm 125 cm 130 cm 147 cm

2. HARDWARE

DRC-HUBO’s hardware design is based on its immediate
predecessor, HUBO2+, developed at KAIST. The first gen-
eration, KHR-1, debuted in 2002, and there have been sev-
eral platform upgrades since then (Kim, Park, Park, & Oh,
2002; Zheng et al., 2013). The development of the HUBO
series is summarized in Table I. DRC-HUBO is the result of
a collaboration between the Drexel-led DRC-HUBO team,
KAIST, and Rainbow, Inc., based on our team’s analysis of
the performance of the HUBO2+ on early versions of the
DRC task descriptions (DARPA, 2013). Once DRC-HUBO
was provided by KAIST/Rainbow, Inc., the team’s efforts
became focused on the development of algorithms and soft-
ware implementation. In this section, we describe the DRC-
HUBO’s hardware briefly, highlighting the major changes
from HUBO2+.

2.1. DRC-HUBO Hardware Overview

DRC-HUBO is 1.47 m tall with a wingspan of 2.04 m, it
weighs 52 kg (including battery), and it has 32 degrees of
freedom (DOF). Relative to its predecessor, it was given
longer (15% increase for legs and 58% for arms) and stronger
limbs with an aluminum skeleton and shell, resulting in a
taller and heavier robot. As Figure 1 shows, DRC-HUBO
is shorter and lighter than its average competitor in the
DRC, which weighs 96.2 kg at a height of 156.4 cm (DARPA,
2013).

The DRC-HUBO upgrade increased the arm from six
to seven DOF, and grasping capabilities were upgraded as
well. Three fingers on each hand close via a single motor for
power grasps. On the right hand, there is an additional trig-
ger finger that moves independently, allowing the robot to
operate power tools. The fingers can support up to approx-
imately 9 kg. DRC-HUBO’s joint motor controllers were
also upgraded to add two new control modes: comple-
mentary switching and noncomplementary switching. In
noncomplementary switching mode, the motor driver con-
sumes less power and compensates back electromotive force
(EMF) efficiently. This mode enabled us to implement a com-
pliant controller for the arms (described in Section 3.2.2),
allowing safe interaction between DRC-HUBO and the
environment.

2.2. Perception System

We designed and built the robot’s sensor head. It pans ±180◦

and tilts ±60◦ without self-collision, and it has the following
sensors:

� 3 × Point Grey Flea3 cameras, each with 1, 280 × 1, 024
resolution and approximately 90◦ × 70◦ field of view
(FOV), forming a synchronized stereo rig with baselines
of 6, 12, and 18 cm.

� Hokuyo UTM-30LX-EW laser range-finder (lidar) which
scans at 40 Hz over a 270◦ FOV at an angular resolution
of 0.25◦. The detectable depth ranges from 0.1 to 30 m,
and reflectance information is provided for each point.
The lidar is mounted on a dedicated tilting servo that has
a range of ±60◦.

� Microstrain 3DM-GX3-45 IMU with three-axis ac-
celerometer, three-axis gyro, and GPS.

� PrimeSense short-range RGB-D camera (rear-facing),
which captures RGB and depth images at 640 × 480 res-
olution with a FOV of 57.5◦ × 45◦. The PrimeSense has a
depth range from 0.35 to 1.4 m, but it does not work well
in direct sunlight.

Perceptual tasks common to all of the events were ana-
lyzed in order to assess sensor feasibility and placement,
including working distance, required update rate, and
minimum resolution. In the first category, for example,
we broke tasks into the following categories: long-distance
(> 5 m away), including landmark, object, and obstacle
detection for purposes of setting walking and driving navi-
gation goals; mid-distance (1–5 m away), including detailed
terrain characterization for imminent obstacle avoidance
and footstep planning; and near-distance (< 1 m), including
object characterization and pose measurement for planning
and monitoring grasping motions. Sensors were selected to
collectively provide high-resolution three-dimensional (3D)
and appearance information from the robot’s toes or right
in front of its face, out to tens of meters, in light, shadow,
or darkness. Images are available at high frame-rate, coarse
depth several times per second, and fine depth once ev-
ery several seconds, with sufficient redundancy to complete
tasks in the presence of sensor failures.
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Figure 1. Left: Comparison of robot platforms in the DRC trials. Right: DRC-HUBO participating in door opening event at DRC
trials.

3. SOFTWARE

The overarching software design is based on a distributed
multiprocess architecture that provides robustness and
modularity. Robustness is achieved by designing processes
to gracefully handle interruptions in communication or op-
eration. In the event of an unexpected failure, components
are designed to behave reasonably and bring the system
to a safe state while recovery is attempted. Modularity is
achieved through a publish/subscribe framework in which
individual processes can be readily modified or replaced
without adversely affecting the overall pipeline. The mul-
tiprocess design also effectively distributes the computa-
tional load between the robot’s onboard computers and the
operator workstations. More detail on the design philoso-
phy and motivation, especially during the early stages of
development, is available in Grey et al. (2013).

The diagram in Figure 2 provides an overview of the
connections between key processes in the system. Processes
on the operator workstations run on top of the robot operat-
ing system (ROS) framework (Quigley et al., 2009), whereas
onboard processes1 communicate via Ach, an efficient
IPC protocol designed for real-time robotic applications
(Dantam & Stilman, 2012). Processes onboard the robot
are robust to intermittent communication, and run asyn-
chronously from the processes on the operator worksta-
tions. Their purpose is to perform real-time control on top
of the whole-body trajectories provided by the operators.

1With the exception of an onboard perception computer, not de-
picted in Figure 2, that uses ROS to transmit camera images, lidar
point clouds, and head pan/tilt commands.

Processes on the operator workstations aid the operators
in constructing trajectories, provide the operators with sit-
uational awareness, and forward commands to the robot.
Unlike the onboard processes, they are not subject to real-
time constraints or CPU usage limitations.

3.1. Low-level Software

The low-level DRC-HUBO software communicates with the
hardware through a controller area network (CAN) bus. The
control frequency of the robot is 200 Hz, constrained chiefly
by CAN bandwidth limitations. The onboard operating sys-
tem is an Ubuntu 12.04 Server with the Preempt-RT patch
applied, and processes are assigned priorities for the kernel
according to their importance.

The trajectory executor serves as the second lowest
level in the software hierarchy. It is responsible for receiv-
ing trajectories from the operator and executing them via
real-time closed-loop control (discussed in Section 3.2). All
trajectories begin and end in statically stable states, and
the entire trajectory must be received before execution be-
gins. Upon completion of a trajectory, the trajectory execu-
tor continues to maintain balance and compliance control
on the final robot configuration until the next trajectory is
provided.

3.2. Real-time Feedback Controllers

Our system runs two feedback controllers online: bal-
ance control and compliance control. The leg and hip
joints are used to balance the robot by shifting its pelvis,
while the arms achieve compliance through DRC-HUBO’s

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. Diagram of our software architecture. Boxes indicate independent processes, with colors ranging the spectrum from
red (hardware interface) to purple (human interface). Gray arrows are Ach channels, and the large gray box represents the ROS
framework.

noncomplementary switching mode. The goal of the bal-
ance controller is to correct for model error or unpredicted
external forces during quasistatic motion and manipulation,
whereas the objectives of the compliance controller are to
relieve the strain of closed kinematic chains caused by in-
teracting with the environment, and to lessen the severity
of impacts between the robot and the environment.

3.2.1. Balance Control

In each of the robot’s ankles, there is a three-axis
force/torque sensor, which is used to measure the robot’s
zero moment point (ZMP). Comparing it to a desired ZMP
provides an error vector that indicates the direction for the
robot’s pelvis to maintain balance. Our balance controller is
defined by the update rule

s̈ = − k

m
s − b

m
ṡ + 1

m
e.

Here, s = (x, y) is the displacement vector, which is ap-
plied to the pelvis location in order to adjust the ZMP,
e = (�x, �y) is the error between the desired and actual
ZMP location, and the m, k, and b gains define the mass, stiff-
ness, and damping of a virtual mass-spring system. Given
s, we use IK (see Section 3.3) to convert the Cartesian offset
for the pelvis to a joint offset for each leg joint.

3.2.2. Compliance Control

DRC-HUBO’s noncomplementary switching mode allows
our software to control the joints using pulse width modu-
lation (PWM) commands, as opposed to raw position com-
mands. Although PWM does not directly map to torque,
we were able to construct a rough empirical relationship
between the two (see Figure 3) suitable for implementing
the torque control law:

τi = Kpi (θdi − θi) − Kdi θ̇i + τGi(θ ).

Here, τi is the commanded torque for joint i, θ is a vec-
tor of joint angles, θdi is the desired angle of joint i, θi is
the measured angle, θ̇i is the measured velocity, and τGi(θ )
is the computed torque due to gravity at configuration θ .
This control law corresponds to low-gain PD control with
feedforward gravity compensation.

Many joints have a deadband in which a nonzero PWM
command results in approximately zero torque output. This
can be mainly attributed to friction in the joint driving sys-
tem, and it requires special compensation to overcome. Our
overall mapping from commanded torque to PWM is given
by

Vi = T −1
i (τi) + min (Kf i θ̇i , sgn(θ̇i)Vfmax,i),
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Figure 3. Empirical PWM vs torque relationship for left elbow (LEB) and left wrist yaw (LWY).

where Vi is the PWM output, and T −1
i (τi) is the inverse

of the PWM-torque relationship plotted in Figure 3. The
right-hand term provides a small boost in the direction
of the joint’s measured velocity, capped to the size of
the joint’s deadband Vfmax,i . Combined, these two control
laws provide reasonably precise compliance control of the
arms.

3.3. Kinematics and Trajectory Generation

Our trajectory generation software for the robot is based
on efficient constrained interpolation between key poses.
The key poses, provided via operator input, are guaranteed
to be both statically stable and free of self-collisions. Un-
derpinning the trajectory generation software is an efficient
analytic inverse kinematics (IK) solver for the DRC-HUBO
robot, along with a redundant state representation that al-
lows for interpolation with end effector and body pose
constraints.

3.3.1. Kinematics and Limb IK

The DRC-HUBO robot has kinematically redundant, 7-DOF
arms, comprised of a spherical shoulder, an elbow, and a
spherical wrist. Each 6-DOF leg is comprised of a spherical
hip, a knee, and ankle pitch and roll joints. The IK for both
the arms and the legs is obtained analytically. The IK solver
for the arms assumes a fixed wrist roll (the final joint in the
series leading from shoulder to end effector), and it solves
for the remaining six degrees of freedom. In our operator
software, we effectively use the wrist roll as an index into
the kinematic null space of the end effector, allowing the

operator to choose different arm configurations to either
minimize torque on certain joints, or to avoid collisions.2

3.3.2. State Representation

Our trajectory generation system uses a redundant repre-
sentation of a robot state, given by

q = (θ, TP , TLH , . . . , TRF ,MLH , . . . , MRF ),

where θ is the vector of joint angles and TP refers to the
world-frame transformation of the pelvis of the robot, which
is the root of the kinematic tree in our robot model. Each sub-
sequent Te is a rigid body transformation representing the
position and orientation of an end effector e. The control
modes Me ∈ {joint, body, world} indicate whether a limb
is currently being controlled at the joint level, or whether
it is driven to its respective transformation via inverse
kinematics.

We say a state is resolved when the inverse kinematics
solver is invoked to modify the joint angles θ to correspond
to the transformation Te of each end effector e, given the
pose TP of the root of the kinematic tree. During state res-
olution, if an end effector is in joint mode, its joint angles
are left unchanged. If it is in body mode, then the IK solver
is used to bring the end effector to the pose Te in the body
frame. Finally, if the limb is in world mode, the desired effec-
tor pose in the body frame is given by T−1

P Te and the joints
for that limb are determined accordingly by the IK solver.
The previous joint angles in the θ vector are used to disam-
biguate between multiple IK solutions, always favoring the
solution closest to the previous configuration.

2Although our IK is analytical and not Jacobian-based, we use “null
space” here in the sense of generating motions (such as orbiting the
elbow) that leave the end-effector pose fixed.

Journal of Field Robotics DOI 10.1002/rob
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3.3.3. Whole-body and Center of Mass IK

When resolving a state, whole-body IK is performed inde-
pendently for each limb relative to the pelvis, and a flag
indicates whether the operation was successful. Center of
mass (COM) IK is also straightforward. Given a desired
position xd of the robot center of mass, we can compute
a desired displacement for the body (i.e., a translation to
compose with TP ) via the update rule

TP ←
[

I α[xd − x(q)]
0 1

]
TP ,

where x(q) denotes the computed center of mass given the
current state, and α is a step size (we find that α ≈ 0.5 gives
very fast convergence). In addition to driving the COM to a
point, we can just as easily drive it to a region such as a con-
servative approximation to the robot’s 2D support polygon
on the ground.

Although we implemented code to compute the whole-
body COM Jacobian given the end-effector constraints, we
found that the naive 2D update rule above was faster

in practice. In benchmarks averaged across 300 regu-
larly spaced robot positions, the 2D method outperformed
whole-body steepest descent by a factor of 2 (1.7 vs 3.4 ms
per query, on average); however, one drawback of our
translation-only strategy vs a whole-body Jacobian method
is that it fails to exploit all degrees of freedom of the robot
(e.g., tilting the body to balance).

3.3.4. Interpolation and Trajectory Validation

Trajectories in our system are generated via smooth interpo-
lation between two statically stable poses of the robot that
are free of self-collisions. The algorithm for interpolation
is detailed in Algorithm 1. All trajectories are represented
both in memory and on the network as a sequence of joint
configurations sampled at the control frequency of the robot
(�t = 5 ms), and augmented with additional metadata, in-
cluding whether the balance and compliance controllers
(Sections 3.2.1 and 3.2.2) should be active, as well as the
desired location of the COM or ZMP.

Journal of Field Robotics DOI 10.1002/rob
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As Algorithm 1 shows, during trajectory generation we
first interpolate between robot states in joint space, followed
by interpolating any rigid transformations, before finally re-
solving the state. Interpolating joint angles maintains con-
tinuity in angles that are not modified by IK (such as wrist
roll and waist rotation, and those of limbs in joint mode),
and discourages “jump” discontinuities where IK swaps be-
tween valid solutions in configuration space. Interpolating
transformations guarantees that the end effectors all move
smoothly in the workspace.

Trajectories may fail to be valid for one of three rea-
sons: the IK solver failed to find a solution, IK solutions
for successive states are discontinuous in joint space, or the
robot is found to be in self-collision. For collision check-
ing, we represent the robot as a union of simple convex
geometric objects such as capsules and boxes, as illustrated
in Figure 4. For safety, the collision volumes are enlarged
slightly beyond the actual physical dimensions of the robot.
The libccd library (Fiser, 2010) is used for collision detection
due to its improved speed compared to traditional triangle
mesh representations.3 In an experiment averaged across
20,000 randomly generated joint configurations, our libccd-
based checker took 0.13 ms per query, whereas triangle mesh
checking with the state-of-the-art FCL library (Pan, Chitta, &
Manocha, 2012) took 0.45 ms. Of these configurations, 39%
were found to be free of self-collisions using the triangle
mesh checker, and only 21% using the convex approxima-
tion, reflecting that the latter conservatively overestimates
the volume occupied by the robot. Overall, trajectory gen-
eration is responsive enough to provide fast feedback for
operators. For example, on a sample run of the debris clear-
ing task, 38 trajectories were generated. Average trajectory
generation time was 5.8 s per trajectory with a standard
deviation of 1.2 s.

Although our interpolated trajectories are not guaran-
teed to be dynamically stable, in practice the online balanc-
ing controller (Section 3.2.1) is effective over a large range
of acceleration and velocity profiles. We observed few bal-
ancing problems stemming from the motion of trajectories
themselves, as opposed to forceful interactions with the
environment.

3.4. Walking

We implemented a dynamically stable walking trajectory
generator using a ZMP preview controller to generate
whole-body trajectories (Kajita et al., 2003). Operators
can generate any of a number of regular walking gaits,
including walking forward/backward, turning left/right,
and sidestepping left/right. Additionally, we produced
a footstep planner, similar to Chestnutt et al. (2005) and

3We also selected libccd due to its support of fast and accurate
separation distance and penetration distance queries; however, we
ended up focusing on collisions only in this work.

Chestnutt (2007), capable of generating a sequence of
footsteps to bring the robot to an arbitrary goal position
and orientation (see Figure 4).

Currently, the ZMP preview controller and the key
pose interpolation described above are the only means of
generating motion for our system. Although we have im-
plemented others, such as direct teleoperation via haptic
devices, we decided to limit ourselves to a smaller set of
functionality to preserve simplicity.

3.5. Operator Tools and Communications

Based on prior research in search and rescue robotics show-
ing the advantages of multioperator approaches (Burke &
Murphy, 2004), we divided the operator tasks into three
main roles. The trajectory designer is responsible for con-
struction and sequencing of key poses that are connected
via interpolation (see Section 3.3.4). The execution manager
is responsible for sending trajectories to the robot and mon-
itoring their execution in real-time. Finally, the perception
manager is responsible for gathering images and point cloud
data to enable the other two operators to perform their tasks.
All operator tools are implemented as plugins for the the
ROS RViz program.

Instead of developing functionality to explicitly the
model and/or recognize objects at run-time, we instead use
the human operators’ ability to interpret camera and lidar
point cloud data. Furthermore, our system requires neither
global localization nor mapping, since our dense sensing
allows us to build a relatively rich representation of the en-
vironment at all times. We developed a library of key poses
for each task (see Figure 6), based on 3D virtual mock-ups
of the events created from the task descriptions (DARPA,
2013). For example, in the debris removal task, we were able
to preselect the general robot configurations for pregrasp,
grasp, lift, and drop phases for each piece of debris.

The division of labor between the three roles allows
operators to parallelize the work of supervising the robot.
In three practice runs rehearsing the debris clearing task, for
example, the trajectory designer was active for an average
of 354 s, the execution manager for 430 s, and the perception
manager for 53 s. The trials, illustrated in Figure 5, highlight
a key trend we observed: operation times for the trajectory
designer on a particular task tend to decrease with practice,
whereas the execution manager’s operation time remains
fairly constant. Independent of the effect of practice, we note
that a single operator would have to be active for a total of
about 14 min in order to accomplish the same work as the
trio, leaving far less time for actual trajectory execution on
the robot.

3.5.1. Trajectory Designer

Our operator tools provide interactive markers that allow
the trajectory designer to manipulate the robot’s feet, hands,

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Left and middle: Triangle mesh model of DRC-HUBO; conservative collision geometry created from simple convex
geometric objects, allowing efficient detection of self-collisions. Right: Our footstep planner generates walking trajectories to a
desired destination. The translucent cyan model is the current state, the white model is the planned state. An interactive marker
(arrows) allows the operator to specify a walking destination.

Figure 5. Left: Graph of operation times in three practice runs of the debris clearing task. Right: Screen shot of execution manager
interface in RViz (see Figure 6 for the trajectory designer interface).

and pelvis. Separate controls on a dockable panel provide
functionality to adjust the waist angle and wrist roll angles,
as well as to modify end effector poses numerically. The
operator tools use the COM IK procedure (see Section 3.3.3)
to ensure static stability of every key pose, and they prevent
the operator from generating any pose that places the robot
into self-collision, or that violates joint limits.

In addition to the configuration of the robot, the tra-
jectory designer selects for each destination key pose the
desired interpolation mode (joint, body, or world) as well as
the speed and acceleration limits for joints and end effec-
tors. Although the default limits are reasonable for a wide
variety of motions, the operator may choose to slow down
during complex manipulation procedures or to assist the
balance controller when manipulating heavy objects. Dur-
ing operation, the trajectory designer selects an appropriate
key pose from the library and modifies it to reflect the envi-
ronment and perception sensor readings (see Figure 7). For
instance, the designer may modify the planned end-effector
pose after walking to an object in order to more accurately
grasp its target. The robot’s current pose may be joined with
one or more key poses into a trajectory via interpolation.
The trajectory designer may specify walking destinations

for the robot by dragging the interactive foot marker (see
Section 3.4 and Figure 4). Walking trajectories are typically
generated by placing the robot model into the key pose for
grasp or pregrasp and dragging it to the desired position in
the current point cloud scan. All generated trajectories may
subsequently be sent to the execution manager’s worksta-
tion via ROS.

3.5.2. Execution Manager

The execution manager is responsible for sending trajecto-
ries to the robot and monitoring their execution. In the case
of errors such as collisions with obstacles or failed grasps,
the execution manager may pause trajectory execution and
determine an appropriate course of action. Minor errors
can be corrected by refining the key pose specifying the end
point of the trajectory using interactive markers, whereas
major ones will likely require attention from the trajectory
designer. The execution manager is also responsible for tak-
ing small footsteps to correct the robot’s approach if it does
not arrive precisely at its destination due to accumulated
errors in walking odometry.

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. Virtual mock-ups of DRC events aided in building a library of key poses. Top: Sample key poses for the debris removal
task. Left: Grasping a diagonally oriented piece of debris. Right: Preparing to safely drop a board. With this hand orientation the
wood will slide down through the fingers safely behind the robot. Such poses are easy for the human operator to provide, but
difficult to encode in a general manner for autonomous systems. Bottom: Key pose for door opening task, along with a subset of
our RViz user interface. The interactive markers (arrows on the left-hand side) allow the operator to position the robot’s feet, pelvis,
and hands.

A further responsibility of the execution manager is to
determine which controllers should be active during each
trajectory execution. To prevent buildup of internal forces,
the balance controller is disabled when pushing or pulling
fixed objects in the environment. We used compliant control
of the arms extensively for the door opening task as well as
the wall breaking task; for debris removal, since the manip-
ulated objects were lightweight, we instead ran the arms
using the more precise stiff proportional derivative (PD)
controller. Finally, the execution manager is responsible for
operating the robot’s hands.

Since there is no force or pressure sensing at the fin-
gers, the execution manager uses visual feedback from the
camera and the lidar to supervise grasping.

Although some responsibilities such as walking and
trajectory refinement are shared by the trajectory designer
and the execution manager, we maximize their productivity
by engaging them in parallel as much as possible. For ex-
ample, as the execution manager is monitoring the current
trajectory, the trajectory designer can be preparing the next
one.

3.5.3. Perception Manager

The perception manager is responsible for gathering the
data necessary to enable the other two operators to per-
form their jobs well. The sensor head’s orientation is con-
trolled by the perception manager, independent of the rest
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Figure 7. Left: Screen shot of an operator’s view in RViz during the door opening task. The transparent cyan robot model is the
actual robot state, the solid white model is the operator’s puppet, and the point cloud is a lidar scan of the door. Right: the actual
robot and door.

of the robot’s joints. The perception manager also super-
vises communications bandwidth and sensor parameters.
During times when monitoring is critical, the frame rate of
images from the camera may be increased, or it may be de-
creased when bandwidth is needed to upload trajectories to
the robots. The transmitted image resolution, video quality,
and region of interest for autoexposure can also be adjusted
on the fly.

Unlike camera images that are streamed continuously,
lidar point cloud data are collected from the robot only at
the request of the perception manager. To further control
bandwidth, each cloud can be filtered by defining hori-
zontal and vertical angular limits, maximum range, and
downsampled through voxelization before being sent back
to the operator workstations. We found that as the opera-
tor with the most experience interpreting point cloud data,
the perception manager was often helpful in fine-tuning the
robot’s hands while approaching very tight grasps such as
the doorknob and drill handle.

3.5.4. Communications

All perception data, key poses, and trajectories are shared
among operator computers via ROS messages. Robot
state and proprioceptive sensor readings are sent to the
execution manager via Achd (the network layer for Ach)
over a compressed ssh connection, and throttled to 2 Hz to
minimize bandwidth, and trajectories are sent to the robot
via Achd as well. To conserve bandwidth, compressed
camera images and point clouds (via JPG and zlib, respec-
tively) are sent to the perception manager workstation
from the robot via ROS, using WPI’s teleop_toolkit for image
transport (Phillips-Griffin, 2013).

Steady-state bandwidth for the entire system is under
the 100 kbps lower limit imposed at the DRC trials events.
Periodic robot state messages consume 18 kbps, and the
perception computer on the robot consumes 47 kbps trans-
mitting to the operator, with a 7 kbps stream of communica-
tions in the opposite direction. Transmissions of lidar point
clouds and trajectories are not included in these bandwidth
numbers. Each type of message is sufficient to dominate
the low-bandwidth communications link when transmit-
ted; however, neither one is streamed continuously.

4. LAB TESTS AND DRC TRIALS

The majority of the development and testing of our sys-
tem took place at the Humanoid Robotics Lab at Georgia
Institute of Technology (GA Tech), starting around August
2013. Although we did our best to simulate the DRC tri-
als, the test conditions at GA Tech were under our con-
trol. To obtain a more objective evaluation of performance,
team DRC-HUBO held a “dry-run” at Drexel University
in mid-November, where each subteam demonstrated their
respective systems in conditions that represented the DRC
trial conditions and rules available at the time as accurately
as possible.

Each of the three DRC trial events described below
must be completed in a maximum of 30 min (minus a time
penalty of 5 min per human intervention), with an addi-
tional 15 min of setup time provided beforehand. Generally,
up to three points can be earned for subtasks in each event,
with an additional bonus point for completing all subtasks
without human intervention. See DARPA (2013) for more
complete descriptions and rules.
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Figure 8. Debris removal event. Top: event schematic, from DARPA (2013). Bottom left: Testing at GA Tech. Bottom right: Two-
armed grasping for heavier pieces was implemented early on, but became unnecessary as the task descriptions evolved.

Figure 9. Door opening event. Left: event schematic, from DARPA (2013). Right: testing at GA Tech.

4.1. Debris Removal

In this event (see Figure 8), the robot is required to remove
ten pieces of lightweight lumber between two walls in front
of a doorway, and subsequently walk through the door.
Scoring is based upon completion of three subtasks: remov-
ing the first five pieces of debris, removing an additional
five, and walking through the doorway.

Shortly after the DRC-HUBO hardware arrived in the
lab in August, our system could barely clear a single piece
of debris within the time limit; however, as the software
matured and the operators gained experience, the system
could clear five debris pieces within the time limit, both in
the lab at GA Tech, and at the dry-run at Drexel. During our
final practice for debris clearing on the morning of the trial,

DRC-HUBO performed as expected by clearing five debris
pieces within the time limit.

4.1.1. Power Failure

The debris removal task was our subteam’s first event
at the DRC trials. To fit into the 15 min setup time, we
performed some of our startup and calibration procedures
offsite, and we maintained system power using an uninter-
ruptible power supply (UPS) while transporting the robot
to the event. At the start of the task, the UPS failed, causing
the robot to fall. We were able to repair most of the dam-
age to the robot and run without the UPS for the rest of
the trials, but the failure had several ongoing consequences:
we were forced to overrun our setup time for the other two
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Figure 10. Wall breaking event. Top left: event schematic, from DARPA (2013). Top right: DRC trials event. Bottom: testing at GA
Tech.

events, compressing the time available to complete them;
the head was bent during the fall, resulting in poor align-
ment of camera images and lidar point clouds; and finally,
several leg joints became miscalibrated, impeding walking
and balancing.

4.2. Door Opening

For this event (see Figure 9), the robot must open and pass
through three doors installed on a flat floor. The first door
must be pushed open by the robot, and the second two open
via pulling. A weighted closer mechanism is installed on the
third door. Points are earned for each door traversed.

In our mockup at GA Tech (see Figure 9), DRC-HUBO
could reliably enter a push door, and sometimes enter a
pull door within the time limit. Our strategy for push doors
was to open the door slightly and subsequently push on it
with a forearm while walking through the doorway. Walk-
ing speed was therefore limited by stability concerns. Our
strategy for pulling was to situate the robot’s feet outside
of the arc of the door so the robot could open it enough to
walk through without subsequently manipulating the door.

Both routine lab tests at GA Tech and the dry-run re-
hearsal at Drexel showed that DRC-HUBO could score at
least one point by completing the first subtask. We believe
that our system’s consistent performance—despite substan-
tial differences between the mock-ups at Drexel and in
our own lab—showcases the effectiveness of our general-
purpose teleoperation system.

The door opening task was our subteam’s second
event in the actual DRC trials. We were able to approach
and open the first door; unfortunately, strong wind blew
the door shut. After we opened the door once more, and as
time was running out, we attempted to side-step through
the doorway more quickly than we typically did during
practice, and the robot lost balance and fell over, ending the
trial.

4.3. Wall Breaking

For this event (see Figure 10), the robot was required to ap-
proach and pick up a cordless drill with a horizontal cutting
bit, and subsequently use it to make several prescribed cuts
in a nearby slab of drywall. Up to three points are awarded
for successfully cutting each edge of a 2 ft. by 1 ft. right
triangle.

Among the events described in this section, we found
wall breaking the most challenging, since the robot must
use a tool to interact with and modify the environment. The
task also involves locomotion while holding a heavy object.
Grasping the drill was a time-consuming operation, made
especially difficult by the narrow window for proper grasp-
ing (approximately ±4 mm translation, ±5◦ rotation). If the
robot’s hand is slightly mispositioned, the trigger cannot
be depressed successfully. Furthermore, drilling tended to
overload the shoulder joints, especially shoulder yaw. In-
teraction between a spinning drill bit and the wall also ap-
plied non-negligible disturbance forces to DRC-HUBO, and
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made it difficult to cut a clean, straight line (as illustrated in
Figure 10).

Our performance on this task varied as DARPA refined
the rules and task descriptions in the months leading up
to the DRC trials. Ultimately, in both the lab at GA Tech
and the dry-run at Drexel, DRC-HUBO could reliably cut
one and occasionally two edges of the triangle within the
time limit, or before shoulder motors overheated. Based on
our progress and the test results, we expected DRC-HUBO
to score one point by cutting one edge in the actual DRC
trials. During a separate, brief dry-run staged by the DRC
organizers in Homestead, our system successfully cut into
the wall as well.

In the DRC trials, the wall breaking task was our
subteam’s last event. Our damaged DRC-HUBO managed
to walk to the drill, but the first grasping attempt was
incomplete, and the robot fell over during the second
grasping attempt from a different angle. After intervention,
DRC-HUBO walked close to the drill but fell again, ending
the trial.

5. LESSONS LEARNED

The DRC differs in both degree and kind from most robotics
research projects. Under many metrics (hours of robot time,
lines of code, size of team), the DRC dwarfs the typical
project experiences of the authors. Whereas a typical project
might involve demonstrating a research innovation in a sin-
gle domain on robotic hardware, the DRC ranges the entire
spectrum of robotic systems, from mechanical and electrical
design, to low-level device drivers, to high-level behavior
generation. In the remainder of this section, we reflect on
the lessons the DRC has taught us.

5.1. What Went Wrong

5.1.1. Event-based Task Allocation

An early strategic decision for our distributed DRC-HUBO
team was to allocate each subteam’s efforts by event, rather
than through a systems-based approach. Consequently,
there was duplication of effort across the entire team in
many areas. Subteams independently developed systems
for functionality that was common to various events, such
as walking, user interfaces, constrained manipulation, per-
ception, and communications. Not only is duplicated code
less well tested than shared code, it is less likely to be written
by the most relevant expert. Since the expertise of the sub-
teams varied with respect to planning, control, perception,
and manipulation, and each one was developing their own
functionality, few software systems took full advantage of
the knowledge of the entire team.

An event-centric task allocation creates perverse incen-
tives in that time spent on releasing and maintaining shared
code is time not spent on one’s own event. For our team,
walking and dynamic balancing (see Section 5.1.3) were the

most prominent, but by no means the only casualties. It is
tempting to suggest that a systems- or competency-based
task allocation would have been more effective for our en-
tire team; however, knowing a priori which functionality
should be shared across subteams presumes global knowl-
edge about top-level organization before the system has
been designed or implemented. Faced with a future project,
we believe that some combination of the two approaches
would probably be best.

5.1.2. Managing Complexity

Managing the inherent complexity of robotic systems is
crucial. Compared with traditional software development,
dependencies between functional units are more complex,
and are mediated by interaction with the physical world
through an array of electromechanical systems. One illus-
trative example arose while debugging our walking con-
troller, which exhibited puzzling, sporadic failures early in
its development. After weeks of verifying kinematics and
tweaking parameters in the walking controller, we finally
discovered that the root cause was a timing glitch—only
triggered occasionally—in the low-level program responsi-
ble for communicating with the motor control boards.

A resulting lesson is to endeavor to be as unbiased
as possible when identifying root causes. Although every
module was potentially a source of error, we incorrectly fo-
cused on the novel component we were developing, rather
than code that preexisted it. Furthermore, it is vital to test
every subsystem to the greatest extent possible. Writing unit
tests for a hardware-in-the-loop controller might be a diffi-
cult and time-consuming task, but it could have prevented
this problem.

5.1.3. Walking and Dynamic Stability

When DARPA announced that the Atlas robot would be the
government furnished equipment platform for the DRC, it
became clear that balancing and walking would be funda-
mental to success. Although our team had implemented
several such controllers early on in the project, none was
particularly robust, and these remained persistent weak
spots for our team. In hindsight, it would have been pru-
dent to specify a minimum set of requirements for walking
and balancing as early in the project as possible, specifying
resistance to various types and sizes of perturbations. An-
other lesson is that if no resources are explicitly allocated for
common functionality in an event-based task allocation, de-
velopers may tend to focus on the difficult aspects unique
to their own subproblems—even if the missing common
functionality entails a high risk of failure.

5.1.4. Sensing

Although our sensor head was adequate to the tasks re-
quired of it, both revisions to the DRC task specifications, as
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well as our team’s shift from an initial interest in autonomy
to a strong focus on human teleoperation, left room for im-
provements. For example, long-distance depth sensing for
object detection and shape fitting became unnecessary with
a human “oracle” to identify objects in monocular images.
Furthermore, despite early concerns about near-distance 3D
sensing for grasping ladder rungs and the roof pillars dur-
ing vehicle ingress/egress, the ladder subteam chose not
to use this information, and DARPA removed the ingress
portion of the driving event. Human teleoperation meant
compressing and downsampling data to transmit over a
poor communications link, reducing the effective frame-
rates and resolutions of the sensors. Fewer, cheaper, and
smaller sensors could probably have done the job just as
well. The wide-angle lenses chosen for the cameras were
excellent for scene context while driving or walking, but
less useful for detail during fine grasping tasks.

5.1.5. Middleware Integration

For this project, we used an ROS for both the operator tools
and the perception computer. While it enabled us to make
rapid progress, at times our approach seemed fundamen-
tally at odds with its design. For example, in order to prevent
megabits of data from overwhelming our low-bandwidth
communications link to the robot, we had to literally sever
the TF tree—the distributed data structure maintaining rela-
tionships between various robot coordinate frames (Foote,
2013)—at the neck of the robot and subsequently write
special-case code to stitch it back together. One lesson for us
is that even well-written frameworks are not trivial to inte-
grate. In future projects, we will make sure to explicitly plan
adequate time to integrate outside code, and perform care-
ful “impedance matching” to ensure that the assumptions
on both sides of the API are met correctly.

5.1.6. Communications

Instead of obtaining the network device that was used at
the DRC trials to shape communications traffic, we simu-
lated the DRC network conditions with a custom imple-
mentation that imposed slightly more aggressive latency
and bandwidth restrictions than expected at the DRC. Upon
arrival to Homestead, it became clear that the packet buffer-
ing and out-of-order delivery imposed by the DRC network
imposed some surprising communications latencies, as nei-
ther one was modeled by our testing setup.

In hindsight, we aimed for the wrong sort of robust-
ness. Our goal was to produce software that was functional
across a range of latency and bandwidth conditions, but
the reality had no range at all: just regular and predictable
swapping between two network conditions according to
a preset scheme. DARPA did participants a favor by de-
scribing in detail how the network would be configured,
and it was a mistake not to work from their specifica-
tions. One lesson for future challenges is to be careful about

generalizing robustness when it is precisely specified in a
task description.

5.1.7. Accelerating Rate of Hardware Issues

As the trials neared, we observed what appeared to be a sub-
stantial drop in hardware reliability. In the final two weeks,
we experienced more hardware failures than we had during
the entire month preceding them, ranging from burnt out
motors, to motor control boards, to the main power distribu-
tion board itself. Looking back, it is clear that what changed
was not the reliability of the hardware, but the duty cycle.
It is natural for hardware usage to peak toward the end of
a project, especially as software matures, and it is therefore
vital to plan for peak use, not average.

Another lesson is to design good automatic safety sys-
tems. For example, DRC-HUBO’s shoulder motors and mo-
tor control boards were susceptible to failure due to high
currents and/or temperatures. Although we learned over
time how to operate the robot in regimes that avoided
burning out components, the more we operated the robot,
the more chances we had to violate our own self-imposed
guidelines. Counterintuitively, laboratory testing is likely to
be less “safe” for hardware than nominal operation, and the
system design should reflect that.

5.2. What Went Right

5.2.1. General-purpose, Usable Operator Software

Ultimately, we were satisfied that our operator software
faithfully and effectively exposed the low-level robot func-
tionality that we developed, and furthermore, that it al-
lowed a trio of operators to coordinate a 32-DOF humanoid
robot in a number of challenging tasks with a single, unified
approach. The division of labor among the operators effec-
tively allowed each one to be reasonably active at the same
time without overwhelming any operator’s cognitive load.
The system we produced was sufficiently general to handle
the door opening, wall breaking, and debris removal events
of the DRC trials. Indeed, our general-purpose approach
would likely have been applicable to at least the valve turn-
ing and hose tasks as well. Focusing on a unified approach
rather than developing specialized software for each event
allowed us to perform more testing. Since code was shared
across all three events, a bug fix or enhancement that ben-
efited our performance on one could potentially aid both
other events as well.

5.2.2. Simplicity of Implementations

Although other DRC teams and other subteams on our
own team used sampling-based planners such as CBi-
RRT (Berenson, Srinivasa, Ferguson, & Kuffner, 2009) to
accomplish the DRC tasks, our design philosophy reflects
the belief that the crux of the DRC is systems engineering
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in general, rather than motion generation in particular.
Despite their utility, complete planners can add substantial
complexity, by requiring programmers to explicitly model
goal conditions unique to each event, as well as shapes
and affordances of objects in the environment (e.g., doors,
debris, drill, etc.). Several strategies we used would have
been difficult to automate, especially those exploiting
sliding contacts, which are notoriously difficult to model.
Examples include sliding an arm across a door while
pushing it open, or letting a piece of wood slide along the
robot’s hand to a safe drop point during debris removal.

Limiting ourselves to just a few vital onboard con-
trol schemes also proved helpful. Other than joint-level
PD control, the only controllers we ran online were a sim-
ple impedance controller for balancing, and a gravity and
friction compensation controller for compliant control of
the arms (both described in Section 3.2). Each novel con-
troller introduces concerns about issues such as conver-
gence and stability, kinematic singularities, joint limits, and
self-collisions. Using pregenerated trajectories with stati-
cally stable starting and ending poses at zero velocity was
also advantageous in preserving simplicity. Each trajectory
is generated and validated holistically—if the trajectory
does not validate, the robot is safe because it remains in
the statically stable starting pose.

5.2.3. Agile Development

Starting in October, we adopted several tenets of the agile
development methodology (Larman, 2004). A whiteboard
in the lab was dedicated to displaying a prioritized list of
tasks. Individuals on our subteam were allocated to the
highest-priority task matching their skill set, and the list
was reviewed weekly. Adopting agile methods allowed us
to successfully maintain the overall functionality of the sys-
tem as features were added and bugs fixed. Given both
the breadth of the DRC and the fast schedule, however, we
believe it would have been difficult to adhere to the agile
method from the start. The tenet of maintaining an intact
end-to-end system at all times is especially difficult at the
start of large robotics projects, while developers experiment
with different approaches, and the underlying capabilities
of the hardware platform are only hazily understood. Still,
we probably would have seen some benefit from switching
to an agile approach slightly earlier than we did.

6. CONCLUSIONS AND FUTURE WORK

Our goal for this project was to produce a general-purpose
system for teleoperation of the DRC-HUBO humanoid
robot to address three events of the DRC trials, all of which
demanded complex mobile manipulation capabilities.
Although the particular implementation we produced
exhibited some technical limitations, none of the problems
we encountered were essentially attributable to the basic

approach. Indeed, we believe it was a sound one overall
in that it spared us from writing, for instance, a distinct
special-purpose planner for each event, with task-specific
domain knowledge encoded in each separate implemen-
tation. If we were to undertake this project again from the
beginning, there are certainly aspects we would choose
to revisit differently. Combining competency-based, in
addition to just event-based, task allocation during de-
velopment would have improved our chances of success.
Addressing common functionality from the beginning of
the project and adhering to strong specifications whenever
possible are also beneficial.

One key question is whether we would in fact partic-
ipate in another DRC-like project, given the opportunity.
While some in the academic research community actively
avoid broadly scoped, competition-based programs, in our
own experience we find that these challenges stand as pow-
erful object lessons for researchers who typically work on
isolated problems. Perhaps the biggest lesson for us was
that the final system only looks as good as its weakest part.
The most sophisticated manipulation planner does no good
if the robot cannot reliably and robustly walk to its desti-
nation. Nevertheless, we were glad to compete at such a
high level, and to work on a project that embodies the truly
multidisciplinary nature of robots.

Aside from throwing into sharp relief the importance
of good systems engineering practices, the DRC has also
played a pedagogical role for the many students who
worked on the project. Not only did our student team
members accumulate more robot operation hours in a few
months than many do over an entire robotics Ph.D. pro-
gram, but they also got to work with a large, integrated
code base. Student team members reported that participa-
tion in this project has helped them develop skills in C++
coding, system design, software development, forward and
inverse kinematics, real-time controls, and general princi-
ples of robot operations. Large integrated challenges such
as the DRC contribute to building a culture of competent
generalists among our students.

6.1. Future work

Although we will not continue our efforts in the next phase
of the DRC, we will continue to use the infrastructure we
have built for this project. Aside from improving the reliabil-
ity and robustness of legged locomotion, topics of ongoing
research include discovering faster and less cognitively de-
manding ways of operating the robot. For the DRC, using a
team of three expert operators was not overly burdensome;
however, we are interested in improving the operator
interface to the point where a single operator can perform
useful tasks with minimal training. To that end, we are
pursuing both higher-level behavior primitives providing
more autonomy (e.g. “walk to object,” “pick up object”) as
well as more contextual awareness in the operator software.
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