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Abstract. We present a visual object detector based on a deep convolutional neu-
ral network that quickly outputs bounding box hypotheses without a separate pro-
posal generation stage [1]. We modify the network for better performance, spe-
cialize it for a robotic application involving ’bird” and "nest” categories (includ-
ing the creation of a new dataset for the latter), and extend it to enforce temporal
continuity for tracking. The system exhibits very competitive detection accuracy
and speed, as well as robust, high-speed tracking on several difficult sequences.

1 INTRODUCTION

Visual object detection is a complex task which entails recognizing, localizing, and
counting objects within an image. The human ability to rapidly detect natural objects
in a scene has long been studied in neuroscience and cognitive psychology [2], but
this task is particularly challenging for computers. Until recently, the best-performing
detectors for objects such as people and cars used combinations of handcrafted image
features such as histograms of oriented gradients [3, 4].

Our motivation in this paper is not general object detection, but rather to rapidly
and accurately detect and track birds and bird nests in forest scenes for a environmental
robotic application. “Bird” is a category in the well-known PASCAL VOC dataset [5],
a widely-used benchmark in visual category classification, detection, and segmentation.
However, there is very little previous work on visual bird tracking or bird nest detection:
[6] applies morphological analysis to analyze overhead images of poultry, [7] using
saliency methods on visible-wavelength and infrared images to find ground nests in
agricultural fields, and [8] uses shape analysis to find nests as outliers on power poles
adjacent to high-speed rail.

In the last few years, standard detection pipelines have been dramatically outper-
formed by deep learning representations. Deep convolutional neural network (CNN)
architectures such as [9, 10] are able to generate high-level image representations that
are effective for a variety of tasks. However, most CNN-based object detectors operate
either in a sliding window fashion [11] or by generating object “proposals” separately
[12,13] and then evaluating these hypotheses. These approaches can achieve good re-
sults on difficult detection benchmarks, but are typically fairly slow and not well-suited
to real-time deployment when compared to very fast and accurate special-purpose de-
tectors (such as for pedestrians [14] and traffic signs [15]) built with other machine
learning methods.



Fig. 1. Sample bird and nest detections from a test video sequence

More recently, it has been shown that current CNNs have sufficient power to rep-
resent geometric information for localizing objects, opening the possibility of building
state-of-the-art object detectors that rely exclusively on CNNs free of proposal gen-
eration schemes [1, 16, 17]. In such approaches, the network is trained end-to-end to
predict both the appearance and geometric information of an object. At test time, given
an input image, the entire network is only evaluated once instead of evaluating at dif-
ferent locations and scales of the image, enabling a large speed-up.

Inspired by these examples, in Sec. 2 we build on the general-purpose "YOLO”
detection network [1], which exhibits excellent accuracy and runs at up to 150 Hz by
directly outputting detection bounding boxes with confidences. We improve upon the
original network by making several modifications, and specialize it by training on only
our two classes ’bird” and ’nest.” To this end, we contribution a new dataset for nest
detection, described in Sec. 4.1.

The speed of the detector permits it to be integrated into a real-time tracker. One
advantage of a deep CNN tracker vs. most standard template-based trackers [18] is "au-
tomatic” initialization: because it has an a priori class concept, it can find the object(s)
itself, and refind it/them if occlusions or mistracking occurs. There has been some re-
cent work on applying deep learning techniques to visual tracking, or so-called “deep
tracking” [19-21], but these are still relatively slow. In Sec. 3 we extend the baseline
YOLO detector to improve the temporal smoothness of the localization estimate while
retaining robustness to object appearance and pose changes.

2 DETECTION

We adapt the 24-layer YOLO network [1] for detection tasks, which we term YOLOp
("YOLO Birds + Nests”). YOLOp_x has approximately the same architecture as the
GoogLeNet proposed by [10], except that the inception modules are replaced by 1 x 1
reduction layers + 3 x 3 convolutional layers. The full network structure is shown in
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Fig.2. YOLOgn detection pipeline (here S = 7, B = 2, and C' = 2)

Fig. 2: it takes a raw input image, resizes it to 448 x 448, and outputs the size and
location of bounding boxes for all C' classes.

The resized input image is divided into an S x S grid of cells, each of which
contains information on B hypothetical object bounding boxes. Each bounding box
is parametrized by a 5-D vector [z, y, w, h, P(Obj)], where P(Obj) = 1 if the center
of any ground-truth object bounding box is inside the cell and P(Obj) = 0 other-
wise. Each grid cell also includes a conditional class probability: Pr(c | Obj), where
¢ € {C}. Accordingly, the class-specific confidence is given by: P(c) = Pr(c |
Obj)P(Obj). For each presented image, the output layer of the network is an S x S x
(B * 5 4+ C) tensor. Non-maximal suppression is used to remove duplicate detections,
followed by thresholding on P(c).

Our modifications are as follows. First, during the training stage, except the final
layer which uses a linear activation function ¢, all other layers in YOLOgn use soft-
plus activation [22]: ¢yoL0 ., n () = In(1+€"). This gives a smoother approximation
than the leaky activation function in the original implementation in [1]. Second, in [1] a
term in the network loss function containing the square roots of the bounding box width
and height is used to address the fact that small deviations in large boxes should weigh
less than in small boxes. We got better results using normalized coordinates to equally
weigh errors between large and small boxes:
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3 TRACKING

A "naive” YOLOgx tracker consists of running the detector on each successive frame
independently. As seen in Table 1, this approach surpasses a number of recent trackers
benchmarked in [18]. However, it still misses detections in isolated frames, and the
localization is a little noisy, suggesting the introduction of a temporal filter.

We accomplish this by running YOLOg_n and a template-based tracker simultane-
ously, combining them to create a hybrid detector-tracker which we call
TrackYOLOg N . For the single-object tracker here, we use the very fast kernel-
ized correlation filter (KCF) [23] (coded as ”CSK” in [18]), which maintains a trained
linear classifier for all frames since last initialization. The two threads are combined as
follows:



When YOLOg 1 first detects an object, KCF is initialized using the highest-probability

detected bounding box

- Let B{(10y,, and By cp denote the output bounding boxes at time ¢ of the base
detector and the template tracker, respectively, where B = [z, y, w, h]

- Let A(t) = || BYor,0p, x — B cr|| be a disagreement” measure for each frame that
YOLOgx has at least one detection, and define a threshold e = 0.5xmax(W/S, H/S)
where W x H are the image dimensions and S is the YOLO detection grid size

— If A(t) < ¢, the hybrid tracking solution is a linear combination BtTrackYOLOB+N =

M B{,OLOBW + Ao Bl . Else, clear the training buffer of KCF and fall back to the

t _ t
detector By,kyoL0g,n = BYOLOBsx
— Finally, if YOLOg4y does not detect an object, the template tracker alone is used:

t . 1
BTrackYOLOB+N - BKCF

4 RESULTS

4.1 Data sets

Bird nests We collected 114 images from the web, each containing at least one nest
from a variety of species, for a total of 169 nest instances'. A wide range of scales
were included, from close-ups to very distant views, and image resolutions ranged from
500x333 pixels to 4000x3000. Some examples (with results overlaid) can be seen in
Fig. 4(a).

Birds We used the bird object category from the 2012 PASCAL VOC dataset [5], a
widely-used benchmark in visual category classification, detection, and segmentation.
VOC 2012 has 20 classes; there are 765 images containing birds in the trainval portion
of the data, with 1,165 bird instances present. Samples are in Fig. 4(b).

Tracking Neither birds nor nests are in standard tracking benchmarks [18], so we pre-
pared several image sequences from YouTube videos; 3 are presented here. For each,
we manually chose ground truth bounding boxes every 10 frames and linearly interpo-
lated them to generate annotations for all frames. The first sequence has 540 frames at
1920 x 1080 resolution. It is taken from a ground-based camera and the dominant mo-
tion is a zoom-in on a distant nest. The second sequence has 310 frames at 1280 x 720,
and is from a drone flying around a tree containing a large bird nest. The third sequence
has 564 frames at 854 x 450, and is a pan to follow a single bird flapping in front of a
complex background. Samples from these sequences can be seen in Fig. 4(c)-(e).

4.2 Detection

We set the following parameters for YOLOp  y training: batch size = 64, momentum
= 0.6, decay = 0.001, learning rate = 0.0001, iterations = 5,000. For robustness, we
perform data perturbation during training via random scaling and translations of up to
30% of the original image size and random adjustment of the exposure and saturation
of the image by up to a factor of 2 in the HSV color space. Our model is pre-trained

! Full nest dataset available here: http://nameless.cis.udel.edu/data/nests



Table 1. mAP %, time on detection, tracking datasets

Nest| Bird Ground| UAV F.lying s /
nest nest | bird im

YOLOs N 97.9]77.2|| 36.8 62.8 | 27.8 0.07
ImageNet-CNN 345|182 32.0
DenseBox [26] 28.8 >2
YOLO [1] 57.7 0.07
ResNet [27] 84.8 >2
TrackYOLOg4nN 63.8 456 | 774 0.07
KCF (”CSK”) [23] 15.9 54.6 | 74.3 0.001
CT [28] 19.9 59.8 | 814 0.03
SCM [29] 17.5 6.0 | 753 9.61

on the 1000-class ImageNet classification training set [9] and fine-tuned on the VOC
2012 trainval set containing only bird images and half of the nest dataset. For testing,
detection threshold on P(c)= 0.2, and the correctness threshold on Intersection over
Union (IoU) = 0.5.

Results are summarized in Table 1 in terms of mean Average Precision (mAP)
[5] and time in seconds to process each image. For a baseline comparison (denoted
“ImageNet-CNN”), we used the Caffe reference network [24] with approximately the
same architecture as [9] and selective search to generate 4,000 object proposals per im-
age. The network was trained and tested on the nest and bird data separately. mAP on
both categories was quite low, and processing time very long. For a more competitive
comparison, we refer to the PASCAL VOC 2012 detection task submissions [25]. At
the time of submission, the leader using only PASCAL VOC data is "DenseBox”, a
VGG16-like CNN which performs end-to-end object detection [26]. DenseBox’s mAP
on the ”bird” category is well below ours, and it is fairly slow and thus is not suitable
for tracking.

When external training data is allowed, the current VOC 2012 detection leader is
”ResNet”, based on a residual network with a depth of over 100 layers [27]. Its "’bird”
mAP is the only submission higher than that of YOLOg, , but at a cost of consid-
erably more processing time. However, this number is not directly comparable to ours.
All of the detectors submitted to [25] are attempting a harder task in that they are trained
for C' = 20 classes rather than C' = 2 as we do. To capture the difference in difficulty,
we note the lower mAP for the original YOLO [1], also using external training data.

We were only able to directly compare ImageNet-CNN to YOLOpgn on the “nest”
category, but we obtained a higher mAP for it than any algorithm on any other category
in the VOC dataset. This may be because nests are rigid objects with relatively less
appearance variation than other categories.

4.3 Tracking

Table 1 also shows tracking results for YOLOp;n and TrackYOLOgpn (e = 60 and
A1 = Ao = 0.5) as compared to several trackers benchmarked in [18] (others were mea-
sured, but left out for space reasons). The comparison trackers and TrackYOLOg N
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Fig. 3. Quantitative PR-curves for different datasets

were started on the ground truth bounding box in the first frame, whereas YOLOgp N
has to find the object by itself.

In all of the sequences, both YOLO-based trackers found and followed the object
throughout the sequence, as seen in Figure 4(c)-(e). We observe that the ground nest
sequence was most difficult for the comparison trackers, most likely because of its
extreme scale change. TrackYOLOg n provided the most improvement on the flying
bird sequence, because YOLOp,n did not reliably detect the bird in certain phases of
its flapping cycle.
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CONCLUSION

We have presented a deep CNN system specialized for bird and nest detection and track-
ing that exhibits excellent accuracy and speed. Current work focuses on incorporating
scene context (sky/ground/tree segmentations) into the detection process, bringing more
online learning into the tracking process without impacting speed severely, and extend-
ing the tracking to multi-object/class scenarios.
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Fig. 4. (a-b) Sample detection results of YOLOgx . (¢)-(e) Sample tracking results, where blue
bounding box is output of hybrid tracker TrackYOLOg 4 , yellow is naive tracker YOLOg4x ,
and red is KCF [23] alone (initialized manually)



