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ABSTRACT

Monitoring marine species, both at an individual and population level, is a

critical part of protecting the marine ecosystem and managing modern fisheries. The

development and utilization of Autonomous Underwater Vehicles (AUV) provides a

more efficient and safer way for the task of population assessment than traditional

dredging methods, as well as yielding greater data collection for biological and oceano-

graphic surveys. However current settings of the AUV still have limitations such that

it has to follow preset searching patterns for data collection and often requires offline

processing with manual analysis. Therefore we are motivated to develop a vision-based

deep learning approach to bring on-board intelligence to the vehicle for autonomous

population monitoring of marine species.

Our contributions in this work are the following: we first implemented deep

learning based frameworks on the task of image-based scallop detection and further

analyzed the performance of different architecture settings to demonstrate their capa-

bility of detection on low-contrast images in real-time. We also explored several ways

to automatically upgrade the groundtruth annotation process. With our preliminary

results, we extended our work on multi-class classification for scallop mortality rate

estimation as well as analyzing the dynamics of predation. Next we experimented with

optical flow for temporal analysis on sequential data. Furthermore we investigated deep

learning based image registration and mosaicing methods to remove overlapping areas

of successive images and therefore achieved a more precise scallop population census.

Finally we proposed multi-sensor terrain analysis that combined information from op-

tical images and side-scan sonar imagery in order to gain detailed representations of

various substrate types. We also established the scallop-habitat relationship utilizing

the results from our terrain classifier associated with scallop density distribution.

xiv



Chapter 1

INTRODUCTION

1.1 Overview

The amount of visual data in our world has been exploded to a massive degree

in the last decades and large data is being produced by seconds every single day. Our

job as computer vision scientists is to develop effective algorithms that are capable of

understanding the content from the visual data and utilizing them on solving real-world

complex problems.

Around the time of late 90s, statistical machine learning techniques, such as

support-vector machine (SVM), boosting, graphical models, developed expediently for

image segmentation. In 2001, [138] proposed an algorithm for face detection based

on Adaboost and five years later the first digital camera with a real-time detector was

announced. There is no doubt that it was a rapid transition from basic science research

to real world applications. Later on, the idea of feature-based object recognition be-

came influential as some features of the object tend to remain invariant and diagnostic

to changes. Instead of matching patterns of an entire object, [75, 76] identify and

match critical features only between objects. [66] stacks features extracted at different

resolution levels from sub-regions of an image to create a spatial feature pyramid for

recognizing holistic scenes.

As more and more sophisticated image understanding algorithms emerged, bench-

mark datasets were created for end-to-end deep learning training and performance

measurement. The PASCAL Visual Object Challenge (VOC) [34] contains 20 object

categories and over 11K images in total. For the sake of having adequate training

data to fit the large amount of parameters within neural networks, ImageNet [115]
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with a hierarchical structure was introduced. This much larger dataset is composed of

20K categories and a total of 14M images. In 2012 the error rate of ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) dropped approximately 10% from the

previous year and the winner [63] beat all other algorithms participated in the chal-

lenge using a convolutional neural network (CNN) architecture. Over the years deep

learning has shown its tremendous capacity and ability in making good progress in the

fields of Computer Vision, Natural Language Processing, Bioinformatics and Robotics.

Today, modern computer vision systems are powered primarily by convolutional neural

networks, and our goal is to solve real-world complex problems among other scientific

fields by the adoption of deep learning frameworks.

Monitoring marine species, both at an individual and population level, is a crit-

ical part of protecting the marine ecosystem and managing modern fisheries. Nowa-

days, there is a growing trend towards using autonomous underwater vehicles (AUV)

for oceanography study. It allows collecting data under the sea on a larger scale than

the use of ships and takes the place of sending human down to the deep sea for ocean

exploration.

Our preliminary work focused on vision-based counting of wild scallops for pop-

ulation health measuring. Sequential images collected by the AUV are independently

analyzed by convolutional neural networks which offers state-of-the-art object detec-

tion accuracy at real-time speeds. To augment the training dataset, a denoising-auto-

encoder network is used to automatically upgrade manually-annotated approximate

object positions to full bounding boxes, increasing the detection network’s perfor-

mance. The system can act as a tool to improve or even replace an existing offline

manual annotation workflow, and is fast enough to function “ in the loop ” for AUV

control. A web application is developed as a visualization tool to plot the quantitative

distribution of scallops in different regions of each mission.

Next we extended our one-class detection experiments to multi-class classifica-

tion for scallop mortality rate estimation as well as analyzing the dynamics of predation.

The newly added categories are other relevant creatures or predators of sea scallops.
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As available annotations are limited among some of these categories, we proposed data

augmentation strategies in order to increase the diversity as well as ameliorate the issue

of data scarcity.

Furthermore we conducted experiments on optical flow and recurrent neural

networks (RNNs) for temporal analysis on sequential data. Since we observed that

there were often large overlapping areas between successive images resulting in inac-

curate scallop counts, we developed deep learning based image registration techniques

and generated image mosaics from the keypoint matches to avoid double-counting the

same scallop.

Since terrain types is one of the most important characteristics in habitat struc-

tures that determines the abundance of sea scallops and from our previous observation

there are certain types of benthic substrate where the scallops often aggregates. Hence

for this reason we built terrain classifiers associated with scallop density distributions

to establish the scallop-habitat relationship. Meanwhile as side-scan sonars are com-

monly carried on AUVs for detection in deep water, we propose multi-sensor terrain

analysis that combines information from optical images and side-scan sonar imagery

in order to gain detailed representations of various substrate types.

1.2 Autonomous Underwater Vehicles (AUV) and Data Collection

In previous years population assessment of marine species were completed in

a dredge-sample fashion. During each survey, a fishnet alike dredge would be towed

along the seabed collecting target species at the standard commercial fishing speed.

All collected samples were then counted manually to estimate the overall population

within fishing areas before being released back to the water. This traditional dredging

approach is most likely to cause incidental mortality to the animals. For example,

physical damage due to contacting with the gears, being exposed to improper temper-

ature or environment would all result in accidental fatality as well as inaccurate stock

assessment.
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Figure 1.1: Gavia AUV

Most recently, autonomous underwater vehicles (AUVs) have been developed for

scientific, military and commercial applications that provides us an efficient solution

for conducting oceanographic surveys without undermining natural habitats. For our

study the AUV manufactured by Teledyne-Gavia is shown in Figure 1.1. It is a type

of self-propulsion underwater robots that are equipped with different kinds of sensors,

an inertial navigation system and control modules allowing the AUVs to travel in the

water with low deployment cost little or no human efforts. Configurations of the AUV

include an inertial navigation system, Doppler velocity log(INS/DVL), control module,

a downward-facing digital color camera, side-scan sonars, propulsion, nose cone with a

forward-looking obstacle avoidance sonar and battery. Movements including forward,

pitch, roll, heading can be controlled through the Gavia mission control program and

the radius is about 8-10 m radius depending on speed settings and length of the vehicle.

The inertial navigation system (INS) is incorporated with a Doppler velocity log (DVL)

for navigation and during each mission the bottom lock of the DVL module keeps

the vehicle remain a constant altitude of 2.25m from the seabed. The depth that is

continuously calculated from the internal pressure sensor in the control module can also

be adjusted. Positions of the AUV is recorded through a GPS in the control module.

The integrated downward-facing camera paired with a flash strobe for illumination
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collects geo-reference photos of the seabed at a capture rate of 3.75 Hz (Figure 1.2c.

Each photo is at a resolution of 1280 x 960 pixels covering a 1.88 m x 1.45 m area. All

photos are stored in portable pixmap (ppm) format with image metadata of latitude,

longitude, altitude, capture time, etc. The side-scan sonars are well-suited for depicting

texture of the seafloor, measuring height distributions and differentiate substrate types.

While in motion the side-scan sonars keep sweeping along the seabed from both sides

at 1800 kHz high-frequency.

Since 2014 a Before-After Control-Impact (BACI) study [37] of estimating sea

scallop incidental mortality has been conducted off the east coast of the United States

at two study areas: the Elephant Trunk Closed Area (ETCA) and the Nantucket

Lightship Closed Area (NLCA). As shown in Figure 1.2a, the ETCA study area is

located in the Mid-Atlantic Bight 65 km east of Fenwick Island, Delaware, with a

depth range of 50-60 m. Regions in ETCA is dominated by sandy substrate. The

NLCA study area is 60 km off of Nantucket Island,Massachusetts with a depth range

of 60-70 m. Substrate of NLCA is a mix of sand, gravel and rocks. 5 Cruises of 95

missions has completed and collected over 1 million camera images and sonar data.
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(a) (b)

(c)

Figure 1.2: (a) Map of scallop dredging study areas; (b) Lawn-mowing track of typical

AUV mission; (c) AUV trackline for image collection.

1.3 Background and Related Works

1.3.1 Introduction on Convolutional Neural Networks

Multilayer Perceptron (MLP) is a supervised learning algorithm and a type of

feedfoward artificial neural network (ANN). A basic MLP network is consist of an

input layer, a hidden layer and an output layer. Every neuron in the current layer is

connected to all the other neurons of the next layer and each neuron in the hidden layer

is associated with a weight parameter that multiplies the input and a bias parameter

adding the result of multiplication. The weights and bias are commonly initialized

randomly and updated during the training process depending upon the error rates

after each iteration.
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While MLP is suitable for both classification and regression problems, it is in-

sufficient of dealing with high-dimensional inputs such as images or videos. Therefore,

Convolutional Neural Networks (CNNs) are designed to map high-dimensional rep-

resentations to output variables. The benefit of CNNs is that they are capable of

learning position and scale in variant structures of the input data which is important

when working on images.

A common CNN is composed of convolutional layers, pooling layers, normal-

ization layers and fully-connected layers. Convolutional layers serve the purpose of

feature extraction. In order to preserve the spatial structures without connecting all

neurons together, filters which can be seen as weight matrices of a certain size with

the same depth as the input are used in convolutional layers. A filter is slide over the

image in a grid fashion and computer dot product at every spatial location to generate

activation/feature maps. The small region in the input image that is connected to a

hidden neuron is called local receptive field. Stride is the number of pixels the filters

shift over the input matrix each time. Weights and bias are shared among all hidden

neurons and thus it allows the CNNs to detect same features at different locations

making the network invariant to image translation. Filters extract low-level features

such as edges at earlier layers and high-level ones at later layers.

Nonlinear activation functions added after every convolutional layer help the

model to adapt with the variance of input data. Table 1.1 lists out the most com-

monly seen and popularly used activation functions. The sigmoid function generates

a smooth range of values between 0 and 1 therefore is suitable for models that output

probabilities. However the sigmoid function may cause an inefficient weights update

because it is not zero-centered and the small derivative values would converge to zero

result in slow learning during training time. The tangent function (tanh(x)), on the

other hand, is a zero-centered activation function that generates a range of values be-

tween -1 and 1. The advantage over the sigmoid function is that it has wider range

for faster learning. Again, it would kill off gradients when saturated at the ends of the

function. In practice the Rectified Linear Unit (ReLU) function is the most frequently
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used in CNNs. It is very computationally efficient and converges much faster than

either sigmoid or tangent functions. It is also possible to converge the combinations

of ReLU with other functions. By initializing the ReLU neurons with small positive

values it allows us to increase the likehood of the neurons being active at initialization

for an efficient computational load. One problem of ReLU, called the ”dying ReLU

problem”, is that it kills the gradients in the negative region. Thus variations of ReLU

are designed targeting at relieving this problem, such as the Leaky ReLU function

and the Parametric ReLU function shown in Table 1.1. Both of them have a param-

eter added to determine the slope in the negative region with more flexibility. The

Exponential Linear Unit (ELU) function is similar to ReLU except it has a separate

function defined for negative inputs to ensure noise-robust deactivation. ELU tends to

converge towards zero faster leading to a faster training time. The Maxout function is

an another nonsaturable function that generalizes ReLU and Leaky ReLU by taking

the max over two linear functions. Because the parameters are doubled for each neuron

it is computationally expensive and increases the overall model size.
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Sigmoid σ(x) = 1
1+e−x

Tanh(x) f(x) = tanh(x)

ReLu f(x) = max(0, x)

Leaky ReLu f(x) = max(0.01x, x)

Parametric

ReLu
f(x) = max(αx, x)

ELU
f(x) =


x, x ≥ 0

α(ex − 1), x < 0

Maxout f(x) = max(wT1 x+ b1, w
T
2 x+ b2)

Table 1.1: Activation Functions

Pooling layers always follow Convolutional layers if used for down-sampling the

feature maps in order to reduce the number of parameters. Similarly to Convolutional

layers, filters and stride are needed for each pooling layer. Max-pooling is one of the

most commonly used pooling operation that calculates the maximum values of receptive

fields. The last few layers in a network usually are fully-connected layers that assemble

features extracted from previous layers for a final output. Fully-connected layers have

the same characteristic as MLP. The softmax activation function at the final layer is

used to transform the logits into probabilities from which classify objects of interest

into corresponding categories.

In CNNs, backpropagation algorithm is used as training the other feed-forward

neural networks. It computes the gradient of the loss function with respect to the

neural network’s weights. Backpropagation is essential for model training of efficiently

updating the weights backwards using derivatives. Gradient optimization methods are
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used to adjust the parameters of the model in order to reduce the error from the loss

function. First-order optimization methods include Batch Gradient Descent (BGD)

which updates weights after calculating gradient on the entire training set; Stochastic

Gradient Descent (SGD) which updates weight more frequently using one training

example each step; Mini-batch Gradient Descent, a combination of SGD and BGD.

SGD with Momentum [63] is used in practice as well. Other optimization methods

such as AdaGrad, RMSProp, Adam, etc are frequently adopted for training neural

networks.

Two common reason causing poor performance of the model are overfitting and

underfitting. Overfitting occurs when a model is too closely fit to a limited set of

data, even possibly picking up noise as learning data. As a result the model is not

generalized enough to new unseen data. Underfitting, on the other hand, means that

the model is neither fit the training set nor generalize well to new data. Underfitting

is usually easier to detect than overfitting during training by monitoring the training

loss. In order to improve single-model performance, regularization techniques are often

used to slightly adjusting the learning algorithm making the model generalized better.

Dropout prevents co-adaption of features by randomly setting some neurons to zero

in each forward pass during training. Data augmentation techniques such as flipping,

scaling, filtering, etc. are advantageous in increasing the diversity of data without

collecting new ones. Early stopping is that we stop the training process the moment the

validation loss stops decreasing thereby preventing the model from overfitted. Batch

normalization is another technique to improve the gradient flow through the network

and stabilize the learning process by standardizing input data.

1.3.2 Classic CNN Architectures

LeNet-5

LeNet-5 [67] is a pioneering CNN developed in 1998 for handwritten character recog-

nition. It consists of 7 layers as shown in Figure 1.3a : 3 convolutional layers with
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2 subsampling pooling layers in between, 2 fully-connected layer at the end. Every

convolutional layer uses a 5 × 5 filter with 1 stride. The network was designed to

recognize handwritten digits in the MNIST dataset where the input were 32 x 32 grey

scale images. LeNet is a straightforward and relatively shallow architecture comparing

to modern CNNs.

AlexNet

AlexNet [63] outperformed all the other non-deep-learning-based models on the Im-

ageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. The error rate

dropped significantly by 10% comparing to the best model of the previous year. The

network structure (Figure 1.3b) is similar to LeNet but has two more convolutional

layers and two more fully-connected layers which makes it more capable of processing

higher resolution images. It uses max pooling instead of average pooling. Dropout,

ReLU activations and SGD with momentum were also introduced in this work. The

entire network was split into two pipelines and trained across two GPUs by putting

half the neurons on each GPU. One drawback of AlexNet is that the model contains a

large number of parameters and hyper-parameters making It prone to be overfitted.

ZFNet

Following AlexNet, ZFNet [151], the winner of ILSVRC in 2013, was designed to visu-

alize intermediate features and operations of the model. ZFNet has a similar structure

(Figure 1.3c) compared to AlexNet with the same number of layers, ReLU activations

and SGD. The major difference is that ZFNet reduced the filter size to 7 × 7 filter

instead of a 11× 11 in AlexNet. The intuition behind this is that using smaller filters

help us to preserve more pixel information thus increasing the accuracy.

GoogleNet

GoogleNet (Inception) is the winner of the ILSVRC in 2014. It achieved a top-5 error

rate of 6.67% which was very close to human-level performance on the task. GoogleNet
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proposed a new concept of inception module shown in Figure 1.4b which had filters in

multiple sizes operating in parallel. Having different sizes of filters at the same level

would help the model to capture both global and local features. Outputs from each

filter are combined before feeding to the next layer. In addition, GoogleNet replaced

fully-connected layers with average pooling layers to largely reduce the number of pa-

rameters but preserved a deeper structure. The 22-layer CNN has 4 million parameters

comparing to 60 million in AlexNet.

VGGNet

Another outstanding work from the ILSVRC 2014 competition is VGGNet [125], which

is another deep CNN that has a uniform architecture (Figure 1.4a). VGGNet used

stacked smaller-sized filters instead of larger kernel size filters used in AlexNet. The

intuition behind this is that multiple small-sized filters give the same effective receptive

field of one larger-sized filter but add depth to the model to learn more representative

and complex features at lower cost. Until today VGGNet is widely used as a baseline

feature extractor in many other applications. However given the size of the network it

can be challenging to train the model due to the computational costs.

ResNet

ResNet, the winner of the ILSVRC competition in 2015, is a much deeper network than

the others we discussed above. It consists of 152 layers claiming that adding more lay-

ers should keep decreasing the error rate. However going deep makes the model hard

to train at a low computational cost and inefficient learning due to the vanishing gradi-

ents problem. To avoid such issues, ResNet proposed residual blocks (shown in Figure

1.5b ) and “shortcut connection” so that the gradients computed can directly be used

to update weights in the first layer. It is assumed that optimizing the residual map-

ping function would be easier than optimizing the original unreferenced mapping. The

added weight layers learn a residual mapping and even if vanishing gradient problem

occurs the identity function can still transfer back to earlier layers preventing any loss
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of performance. The complete network architecture is shown in Figure 1.5a.

(a) LeNet-5 Architecture [67]

(b) AlexNet Architecture [63]

(c) ZFNet Architecture [151]

Figure 1.3: Basic CNN architectures
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(a)

(b)

(c)

Figure 1.4: (a) Configurations of VGG16 (left) and VGG19 [125]; (b) Naive Inception
module [128]; (c) Inception module with dimensionality reduction [128]

(a) (b) Picture 2

Figure 1.5: (a) Overall Resnet architecture [46]; (b) Residual Learning Block [46]
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1.3.3 Deep Learning for Object Detection

Early CNN-based object detectors operated either in a sliding window fashion or

generating object proposals separately [133, 157] and then evaluating these hypotheses.

These approaches achieved good results on difficult detection benchmarks, but were

fairly slow and not well-suited to real-time deployment. More recently, it has been

shown that CNNs have sufficient power to represent geometric information for localizing

objects, opening the possibility of building state-of-the-art object detectors that rely

exclusively on CNNs free of proposal generation schemes [108, 109, 110]. In such

approaches, the network is trained end-to-end to predict both the appearance and

geometric information of an object. At test time, given an input image, the entire

network is only evaluated once instead of at different locations and scales of the image,

enabling a large speed-up.

Two-stage detectors

Two-stage detectors use selective search or region proposal networks to generate

regions of interest in the first stage. Assuming there is infinite numbers of candidate

bounding boxes the proposed regions can be very sparse. During the second stage the

regions proposed are processed for bounding box regression and object classification.

R. Girshick et al. proposed a method R-CNN [42] in 2014 using selective search

[133] to extract region proposals from images and feeding the regions into a CNN to

generate feature vectors. All features extracted are then passed to a SVM classifier

for final predictions. Overview of the R-CNN detection system is shown in Figure

1.6a. Additionally the algorithm also predicts four offset values for bounding box

adjustment in order to increase the precision of localization. R-CNN achieves 0.537

mAP on VOC 2007 dataset and 0.585 mAP on VOC 2010 dataset. With deep networks

as feature extractor, training R-CNN can be quite expensive in space and time, and it

is hard to be implemented in real-time, i.e. 47s per test image. Meanwhile, there is

no training during the selective search phase causing bad candidate region proposals

generated which leads to poor overall performance. Aiming at solving the drawbacks
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of R-CNN, the same authors proposed Fast R-CNN [43] in 2015 which feed the input

images instead of region proposals to the CNN for feature map generation. In this

case the convolution operation is applied only once per image. The feature maps are

then warped and reshaped into fixed size by a RoI pooling later so that they can be

connected to FC layers (Shown in Figure 1.6b. Finally predictions and offset values are

computed through a Softmax layer. Fast R-CNN significantly reduced the training/test

costs over R-CNN and achieved higher mAP (0.70 on VOC 2007 and 0.688 on VOC

2010) in the meantime.

S. Ren et al. proposed another region-based detection network, called Faster

R-CNN [111]. The novelty of their work is that they replaced the Selective Search

algorithm with a Region Proposal Network (RPN) in order to largely reduce the costs

of producing region proposals. The RPN can be merged with the detection network

into a unified architecture (as in Figure 1.6c) by sharing the convolutional features.

It reached a frame rate of 5fps on one GPU for a deep VGG-16 [125] model. Using

a neural network for region proposal generation also improve the quality of proposals

and hence increase the overall detection accuracy.
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(a) R-CNN object detection system overview [42]

(b) Fast R-CNN architecture [43]

(c) Faster R-CNN architecture [111]

Figure 1.6: Overview of exemplary 2-stage detector architectures
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Two-stage detectors have been improved over the years in terms of speed and

accuracy. Because that all objects should be included in the region proposals generated

during the first stage and negatives are then filtered out before further being classified

into corresponding categories, two-stage detections can often achieve top accuracy in

localization and detection.

One-stage detectors

One-stage detectors using a single feed-forward convolutional network to sample

across an input image densely predicting the bounding boxes and class probabilities in

one stage. The Single Shot MultiBox Detector (SSD) [73] is one of the first proposing

to use an unified architecture for object detection. SSD is built on VGG-16 [125] for

feature extraction and uses multi-scale feature maps to detect object independently.

Given the confidence scores, Non-maximum Suppression (NMS) technique is adopted

to discard duplicate predictions of which scores are lower than the threshold. SSD

achieves 0.721 mAP on VOC2007 [34] dataset at 58 FPS for 300× 300 input. One of

the drawbacks of SSD is that it struggles to differentiate objects in similar categories

and recognize small objects.

Redmon et al. developed one such unified CNN for realtime object detection

which they called “You Only Look Once” (YOLO) [108] The core idea of YOLO (as

shown in Figure 1.7a) is that it considers the detection task as a regression problem.

Specifically, the input image is divided into an S × S grid of cells, each of which

contains information on B hypothetical object bounding boxes. Each such bounding

box is parametrized by a 5-D vector [x, y, w, h, P (Obj)], where P (Obj) = 1 if the center

of any ground-truth object bounding box is inside the cell and P (Obj) = 0 otherwise.

Each grid cell also includes a conditional class probability: Pr(c | Obj), where c ∈ {C}.

Accordingly, the class-specific confidence is given by: P (c) = Pr(c ∈ Obj)P (Obj). For

each presented image, the output layer of the network is an S × S × (B ∗ 5 + C)

tensor. Non-maximal suppression is used to remove duplicate detections, followed by

thresholding on P (c).
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(a)

(b) (c)

Figure 1.7: (a) The regression process of YOLO detector [108]; (b) Darknet-19 [109]

classification model from YOLOv2; (c) Darknet-53 [110] classification model from

YOLOv3.
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Using values of S = 7 and B = 2, YOLO achieved a very high mAP (mean

average precision) on the 20-class PASCAL VOC 2007 [34] while running at a speed of

45 fps, faster than any comparable system. One shortcoming of YOLO is its difficulty

at detecting small objects that are very close to each other since it only predicts two

bounding boxes within one class per grid cell. And the maximum number of objects

the model can detect is limited by the grid cell.

In 2017, Redmon and Farhadi proposed another realtime detection system,

YOLOv2 [109], that aims to improve on the localization and recall performance of

YOLO. Several key modifications in YOLOv2 include batch normalization on every

convolutional layer to enhance convergence and regularize the model, a higher input

image resolution of 448×448 and finer gird with S = 13, and the placement of YOLO’s

fully connected layers which directly regress bounding box coordinates with and ”an-

chor box” concept adapted from [111] which allows multi-object prediction per grid cell.

YOLOv2 uses a new classification model as the front end which is somewhat similar to

VGG models [125], but with global average pooling to make predictions and 1× 1 fil-

ters to compress features representations between 3×3 convolutions. The classification

model is called ”Darknet-19” and has 19 convolution layers and 5 max-pooling layers.

Details of the configurations are shown in Figure 1.7b. YOLOv2’s mAP on PASCAL

VOC 2012 is significantly improved over YOLO an comparable to the current leaders

like Faster R-CNN with ResNet [46] and SSD512 [73] while running from 2 to 10 times

faster.

YOLOv3 [110] was proposed to further improve the detection accuracy with a

more complex underlying architecture than YOLOv2. A new network, Darknet-53 was

designed for feature extraction. For the task of detection, it stacks another 53 convolu-

tional layers giving a 106-layer architecture. A full description of the Darknet-53 model

is in Figure 1.7c. YOLOv3 was added several popular components appeared in most

of state-of-art detectors, such as skip connections, residual blocks, and upsampling.

Following [111], for each bounding box YOLOv3 predicts an objectiveness score using

logistic regression but only assigns the box with score = 1 prior for each groundtruth
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object.

The major modification in YOLOv3 is that it predicts boxes at three different

scales. The feature map that is taken from 2 layers previous is then upsampled twice

in the network generating three different sizes of feature maps at different places.

The 3 features maps are concatenated together and processed through the following

convolutional layers. The same design repeats one more time to predict boxes at final

scale. This procedure allows the network to gain more meaningful semantic information

and finer-grained features which makes YOLOv3 better at detecting small objects.

YOLOv3 uses 9 anchor boxes and since it predicts boxes at 3 different scales, results

in 10x more number of predictions than YOLOv2.

The next generation of YOLO, YOLOv4 [11], adopts Bag-of-Freebies and Bag-

of-Specials methods to improve detection accuracy without increasing inference time.

Universal features that are well-known of improving CNN accuracy were also included

in YOLOv4: Weighted-Residual-Connections (WRC), Cross-Stage-Partial-connections

(CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT), Mish

activation, Mosaic data augmentation, CmBN, DropBlock regularization, and CIoU

loss. YOLOv4 improved the mean average precision (mAP) by 10% and the number of

frames per second by 12% on MS COCO dataset compared to YOLOV3. Comparison

of YOLOv4 and other advanced object detectors is show in Figure 1.8a . The YOLOv4

architecture is composed of 4 blocks: CSPDarknet53 as the backbone, the neck, dense

prediction (head) and sparse prediction. Shortly after, the YOLOv5 implementation

has been released publicly [58]. YOLOv5 has similar structure (i.e. CSP backbone

and PA-NET neck) as YOLOv4 but has improvements in mosaic data augmentation

and auto learning bounding box anchors. The author of YOLOv5 claims that YOLOv5

achieved comparative accuracy with YOLOv4 meanwhile is faster and more lightweight

(Figure 1.8b). However there was not a paper published along with the implementa-

tion releasing, and some questions have been raised among the community on whether

the results are reproducible. There it is hard for us to conclude the performance of

YOLOv5 without in-depth investigation.
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(a)

(b)

Figure 1.8: (a) Comparison of YOLOv4 and other object detectors on MS COCO [11];

(b) Performance of 4 available models of YOLOv5 on MS COCO[58]
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One-stage detectors have high inference speeds as they contain a single feed-

forward convolutional network which skip the region proposal stage and perform object

detection directly over a dense set of candidate locations. Because of this property,

one-stage detectors are often favored for real-time applications. However the train-

ing procedure for one-stage models is easily to be dominated by the large number of

background samples result in increasing number of false positives. This foreground-

background imbalance has become the bottleneck for one-stage detectors achieving

higher accuracy. RetinaNet [72] specifically addressed this issue using a newly pro-

posed Focal Loss (FL) function. The traditional Cross Entropy (CE) loss is prone to

overlook rare classes when summed over a large number of easy examples and thus a

weighting factor α ∈ [0, 1] is often introduced to address the class imbalance. The α

factor can be set by cross validation as a hyperparameter or set by inverse class fre-

quency. In RetinaNet, the balanced CE loss is considered as a baseline for comparison

with proposed loss function. The Focal Loss is defined as: FL(pt) = (1 − pt)γ log(pt).

The modulating factor (1−pt)γ with a tunable focusing parameter γ >= 0 enforces the

model to down-weight easy examples and focus training on hard negatives. For an ex-

ample that has a pt approaching to 1, the modulating factor is closed to 0 and thus the

loss for this well-classified example is down-weighted. On the other hand, a hard exam-

ple with a small pt approaching to 0 would have a higher loss as the modulating factor

closing to 1. Additionally, a α balanced FL function (FL(pt) = −αt(1− pt)γ log(pt)) is

also implemented in their work to boost accuracy.

Figure 1.9: The RetinaNet network architecture [72].
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The complete architecture of RetinaNet is shown in Figure 1.9. The backbone

(Figure 1.9 (a) and (b) is consist of ResNet and Feature Pyramid Network (FPN) on

the top of it to generate rich, multi-scale convolutional feature pyramid from input

images. Two subnets are connected to the back for one classifying anchor boxes and

regressing from anchor boxes to ground-truth object boxes, respectively. In Table 1.2

we show the object detection performance comparison of RetinaNet among other one-

stage and two-stage detectors on on COCO test-dev [70] from [72] paper. RetinaNet

with ResNet-101-FPN exceeded the average precision of Faster R-CNN [111] while

running 50ms faster per image.

1.3.4 Deep Learning for Semantic and Instance Segmentation

Over the years, we have witnessed the accomplishment of deep learning on the

task of semantic [19, 23, 74] and instance [17, 20, 18, 142] segmentation cross various

application domains. Semantic segmentation requires each pixel to be associated with

a class label. Pixels of objects in the images are grouped together based on pre-defined

categories. Multiple objects of the same class are treated as a single entity in semantic

segmentation problems. Instance segmentation, on the other hand, separates each

object in the same class and treats them as distinct individual instances. It not only

needs to detect objects in an image but also requires to determine which category each

pixel belongs to.
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AP AP50 AP75 APs APM APL

Two-stage methods

Faster R-CNN+++ [46] 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [71] 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [50] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM [123] 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods

SSD513 [73] 31.2 50.4 33.3 10.2 34.5 49.8

YOLOv2 [109] 21.6 44.0 19.2 5.0 22.4 35.5

YOLOv3 [110] 33.0 57.9 34.4 18.3 35.4 41.9

RetinaNet w ResNet[72] 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet w ResNeXt[72] 40.8 61.1 44.1 24.1 44.2 51.2

Table 1.2: One-state and two-stage methods performance comparison of object detec-

tion results on COCO test-dev [70]

The task of segmentation is to assign class labels to each pixels across an im-

age. CNN models can be adjusted to complete this task by removing the FC layers

at the end to produce dense predictions. The challenge is that the process of la-

beling each pixel in order to train deep neural networks for segmentation is often

tedious and expensive. Weekly supervised segmentation techniques have been devel-

oped over the past decades as they only require partial annotations making them more

practical than fully-supervised learning for training segmentation models. [25] used
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bounding box annotations as an alternative or extra source to generate segmentation

masks. [94] developed Expectation-Maximization (EM) methods to train image-level

and bounding-box annotated data for image segmentation. [104] extended the famous

GrabCut [114] method and defined an energy minimisation problem over a densely-

connected conditional random field in order to collect pixel-wise object segmentations

by updating training targets iteratively. [129] proposed a partial cross entropy (pCE)

loss function to improve the performance of deep CNNs on generating full masks from

partial scribble groundtruth. [102] developed a Point-based Distance Metric Learning

method that does not demand dense annotations but uses a sparse number of labeled

points to guide the training process. [9] also introduced point-level supervision com-

bined with Objectness Prior in the loss function to further substantiate whether each

pixel belongs to any object class. Other types of labels for supervising segmentation

labels, such as patches [10, 99], image tags [57, 7], have been applied as guidance as

well.

Semi-automatic object segmentation is an another direction to alleviate the

heavy workload to obtain dense annotations which includes human in the loop to pro-

vide class information. GrabCut [114] is one of the pioneering works that estimates

color distribution between the target object and background using a Gaussian mixture

model based on user-defined bounding boxes of the object. The estimated segmenta-

tion regions are gradually updated from a graph cut based optimization. Users can be

further included in the process by correcting edges or misclassified regions. [68] aimed

to solve the ambiguity between the user’s input clicks and the intended segmentation

regions. Their proposed architecture consists of two CNNs. One is trained for synthe-

sizing a diverse set of solutions that it produces a set of possible segmentation areas of

an image based on the user’s input. The second is a context aggregation network that

evaluates the predicted masks.

[93] first developed a groundtruth annotating system using 4 extreme points,

i.e. the top, bottom, left- and right-most points of an object. The 4 points are on

the boundary of a object where can be easily used to obtain a groundtruth bounding
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box. The authors argue that traditional annotating systems of dragging rectangles or

clicking the opposite corners of objects always require refinement in order to acquire

tight bounding boxes. Figure 1.10-a gives an example of the conventional way of

annotating an object comparing to [93] ‘s method in Figure 1.10-b. [93] crowd-sourced

extreme point annotations for PASCAL VOC 2007 and 2012 datasets showing that

extreme clicking led to high quality bounding boxes with a 5x faster speed.

Figure 1.10: Comparison of conventional method of annotating bounding box (a) with

[93]’s extreme point method (b).

Deep Extreme Cut (DEXTR) [81] further explored transforming extreme points

as input for instance segmentation. Figure 1.11 shows the overview architecture of

DEXTR. The extreme point annotations are used as guidance to the input of the

network. Each of the points is centered by a 2D Gaussian to generated a heatmap with

activations which is then concatenation with the RGB channels to create a 4-channel
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input. It introduced atrous convolutions to replace the fully connected layers at the end

of the ResNet-101 backbone in order to preserve the same receptive field and output

resolution for dense prediction.

DEXTR were then implemented on various applications to test its general-

ization capabilities and applicability. For class-agnostic instance segmentation, mask

predictions that can be of any class including unseen categories were acquired from

extreme points. The method was validated on PASCAL [34], COCO [70], GrabCut

[114] public datasets and it surpassed the state-of-the-art techniques such as Sharp-

mask [100], DeepGC [149], MILCut [147], etc. For video object segmentation, it fol-

lowed a semi-supervised framework but used the masks generated from DEXTR on the

DAVIS datasets [96, 101]. It showed that using DEXTR reduced the annotating time

meanwhile maintaining the same performance as the state-of-the-art trained on the

groundtruth masks. In other words DEXTR would be helpful to created more masks

in the same time period producing better segmentation results. The authors also pro-

vided annotation and interactive object segmentation pipelines assisted by DEXTR to

alleviate the workload of groundtruth mask generation.

Figure 1.11: Architecture of Deep Extreme Cut (DEXTR) [81]

Inspired by DEXTR, Zhang ( et, al.) [153] developed an Inside-Outside Guid-

ance (IOG) approach for interactive segmentation. Given the fact that DEXTR re-

quires users to carefully click all extreme points on the object boundaries, the authors

of [153] proposed extreme clicking at the interior and exterior of object regions. The
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inside point should be clicked near the center of object while two outside points are at

the symmetrical corner location. The authors also claimed that the DEXTR annota-

tion process might cause confusions when the points were at similar spatial locations

whereas the IOG approach could provide indications of foreground and background

regions. Similar to DEXTR, each point is centered by a 2D Gaussian generating two

heat maps, i.e. foreground and background relatively. For the segmentation network,

[153] adopted a coarse-to-fine designed architecture [22] in order to refine the inac-

curate segmentation along the object boundaries. The CoarseNet is FPN-like with

lateral connections that fuses deep-layer information with low-level details. The pyra-

mid scene parsing module at the end helps with enhancing the representation with

global contextual information. FineNet is designed to recover the missing boundary

through upsampling and concatenating information across every layer in CoarseNet.

Additionally the IOG approach supports interactive segmentation that allows adding

extra clicks of foreground or background from users for region correction and refine-

ment.

1.3.5 Image Registration

Image registration is a method of mapping two or more images into a particular

coordinate system in order to integrate the information. Depending on the manner

of data acquisition, different registration techniques may be applied for various ap-

plication domains. Images of the same scene or object that are captured at different

viewpoints can be registered together to gain a better representation of the scene,

as known as the multi-view analysis. Example applications include image mosaicing,

shape recovery from stereo, etc. For multi-modal analysis, data is acquired from var-

ious sensors. By merging information obtained from different sources, it is able to

provide greater details or spatial and spectral characteristics than individual images.

This type of registration has been widely used in medical imaging, remote sensing, 3D

reconstruction, etc. Images taken during a period of time can be registered together

to monitor or track changes for a multi-temporal analysis.
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The main steps of an image registration procedure typically include feature de-

tection and matching, model transformation and resampling. In the step of feature

detection, salient structures (such as edges, corners, distinctive regions, etc) shared

among the images are extracted as control points. These features are useful to find

correspondence and establish spatial relations between sensed images and the reference.

A mapping function is then designed to map the control points through a transforma-

tion model. Types of transformation model include affine or linear transformation

(scaling, rotation, reflection, translation, shearing) and nonrigid transformation (thin-

plate, multiquadrics, deformation, etc). Affine transformation methods are typically

global whereas nonrigid transformation models can locally warp target images to be

aligned with the reference image.

In general, there are two types of alignment algorithms: The intensity-based

methods register entire images or sub-images by computing intensity patterns for simi-

larity measurement; The feature-based methods utilize distinct points in images to ob-

tain point-by-point correspondence. [51] uses shape context as a feature-based method

for remote sensing image matching. The shape context exploits feature similarity be-

tween circular regions of the two images to find corresponding control points on the

sensed image. [148] combines intensity-based and feature-based methods proposing a

hybrid approach that matches interior intensities of scale-invariant salient region fea-

tures using robust similarity measures. Wavelet-based techniques are commonly used

for feature extraction [82, 117]. [77, 2, 1, 3, 137] propose adjustments and improve-

ments based on the Scale Invariant Feature Transform (SIFT) algorithm[75] to detect

features to identify similar objects in two images. [86] applies automatic Harris cor-

ner detection and a Random Sample Consensus (RANSAC) transformation model on

the task of automatic satellite image registration. [62] proposes a fast affine template

matching algorithm and a branch-and-bound scheme to accelerate the algorithm.
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The multi-modal registration can be considered as a special case of image reg-

istration that data to be registered does not belong to the same modality. Nowa-

days, data is often collected from various sources (e.g. X-ray/MRI/CT volumes, cam-

era/sonar/LiDAR) in many application domains. Such data may have different dimen-

sion, structure or density which introduces challenges that it is not straightforward

to come up with a general framework to relate multiple modalities. [139] introduce a

information theoretic approach to analyze similarity across modalities using maximiza-

tion of mutual information. Without prior knowledge of the correspondences across

different modalities, [87] projects multi-modal problem into uni-modal registration.

Plenty of research has been conducted on optimization-based algorithms [95,

140] that optimize the transformation parameters iteratively over the quality of reg-

istration process. [121] presents a Particle Swarm Optimization (PSO) technique to

register 3D MRI and 3D CT medical data. [21] proposes a hybrid approach that

comprises genetic algorithms and conventional PSO. Expectation-Maximization (EM)-

based registration is an iterative method to find local maximum likelihood of the best

alignment.

Deep learning based approaches have been increasingly implemented in solving

image registration problems. D2-Net [31] finds reliable pixel-level correspondences

using a single convolutional neural network that works as a dense feature descriptor

and a feature detector simultaneously. [84] proposes a unified deep network pipeline of

learning detection, orientation estimation, and feature description while preserving end-

to-end differentiability. [79] augments local feature descriptors using cross-modality

contextual information.

DeTone et al. developed deep image homography estimation architectures (i.e.

HomographyNet) on image pairs in 2016 [27]. The regression network directly pro-

duces homography parameters that maps one image to another. Additionally the

architecture can be converted with minor changes to a classification model that de-

livers distributions over quantized homographies indicating the confidence level of the

estimations. Their work casts the homography estimation into a learning problem by
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using VGG-like deep neural networks without extra efforts on local feature detection

and transformation estimation. The same authors proposed a point tracking system

powered by two deep convolutional neural networks for SLAM tasks [29]. Given the

fact that the 2d point location detection stage in most sparse SLAM pipelines often re-

quires hand engineering and expert knowledge, the first network the authors designed,

MagicPoint, takes an input image and extracts salient mapping points that are SLAM-

ready to the other image. The second network, MagicWarp, generates homography

from the point image pairs produced from MagicPoint. Unlike traditional approaches,

the transformation engine finds the correspondences in image pairs using point loca-

tion information instead of descriptors. Experiments in [29] shows that the MagicPoint

detector is more robust to lighting variation than traditional corner detection baselines

and MagicWarp exceeds the Nearest Neighbor matching approach with higher pose

estimation accuracy. The authors came up with the idea of SuperPoint [28] in the

same year that is a self-supervised learning approach for interest point detection and

description. The architecture is a fully-connected neural network that consists of a

shared encoder operating a full-sized images, a interest point decoder for detection and

a descriptor decoder. Locations of pixel-level interest point and associated descriptors

are learned jointly in one forward pass. In order to increase the robustness of the

network, a multi-scale Homographic Adaptation was introduced as well that warps

the input image multiple times to understand interest points from different viewpoints

and scales. The SuperPoint network was trained in conjunction with Homographic

Adaptation on synthetic dataset to generate pseudo-groundtruth interest points on

real images.

From SuperPoint, SuperGlue [116] was introduced for learning feature matching

with Graph Neural Networks (GNNs) that jointly found correspondences and rejecting

non-matchable points. It adopts an attention-based context aggregation mechanism to

learn geometric transformation and underlying 3D scene through end-to-end training.

SuperGlue is designed as solving a optimization problem of finding the matches as

partial assignments between two sets of local features. The architecture is made of an
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Attentional Graph Neural Network and an Optimal Matching Layer. Given initial local

features, the Attentional Graph Neural Network computes matching descriptors with

long-range feature aggregation across images. The keypoint encoder is formulated such

that it allows the network to collectively reason about positions and appearances. The

multiplex graph contains intra-image edges that connect keypoints within the same

image and inter-image edges that connect keypoints in one image to all keypoints in

the other image. Representations of the nodes are updated at each layer of the network

and simultaneously aggregating with all edges. Attentional Aggregation includes self-

attention based for intra-image edges and cross-attention based for inter-image edges.

Furthermore the aggregation mechanism is formulated with maximum flexibility so that

the network is able to focus training on selected subsets of keypoints. The purpose of

the Optimal Matching Layer is to produce a partial assignment matrix. All possible

matches are included to compute the score matrices and pairwise scores are used to

represent the similarity of matching descriptors. Similar to [28], the authors adopted

the common technique in graph matching of dustbins to augment assignments by sup-

pressing unmatched keypoints. Finally the Sinkhorn algorithm [118] was adopted to

normalize the score matrices.

Compared to related works such as Instance Normalization [134], Transformer

[136] and ContextDesc [80], SuperGlue has advantages of processing both appearance

and position together as well as a more flexible context aggregation mechanism. For

homography estimation, Superglue outperformed PointCN [85] and OANet [152] with

both RANSAC and DLT estimators on the Oxford and Paris dataset [103], achieving

98 % recall and high precision. For indoor and outdoor pose estimation, Superglue

was evaluated with baseline matching approaches using root-normalized SIFT [75] and

SuperPoint [28] features on the indoor scenes dataset from [24] and the PhotoTourism

dataset from the CVPR’19 Image Matching Challenge, respectively. SuperGlue sur-

passed all baselines with higher pose accuracy and matching scores.
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1.3.6 Temporal Data Processing

Sequence Learning

Feed-forward networks as we discussed in previous sections, do not have notion of

order in time that only the current input is considered and transformed to an output.

However under the circumstances where the current output does not only depend

the current input but also on the previous input, it would be necessary to make our

model be flexible in order to process sequential information and data with dynamics.

Recurrent neural networks (RNNs) are a type neural network that addresses this issue

with a so-called internal memory, that is, they are able to memorize the input they

received. Typically in RNNs, there is a looped recurrent cell that keeps the input

repeated for t time steps and pass the output of the recurrent neurons to the next

layer only after completing all the time steps. A recurrent neural network can be

unfolded into multiple copies of the same network (shown in Figure 1.12a), each passing

information to its successor. Advantages of RNNs includes having less limitation of the

input length, taking historical context into account and sharing weights across time.

However when the gap between the past relevant information and the current task

grows, RNN becomes incapable of learning to connect the information.

Long Short-Term Memory network (LSTM) [48] is developed from tradition

RNNs that is able to learn long-term dependencies. From Figure 1.12b and 1.12c we

show the differences of the recurrent block between a standard RNN and the LSTM

network, such that a standard RNN has a simple one-layer (tanh) structure inside the

recurrent block whereas LSTM adds 3 sigmoid layers inside the block having a more

complex structure. The sigmoid layers help to decide whether the input should be pass

on to the next step or not. Within LSTM, the information go through a cell states

mechanism and there are several different types of gates to help the network selectively

deciding what inputs to remember or forget. LSTM is capable of reserving data for a

longer period of time as well as balancing between important information and the ones

that are not considering relevant.
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(a) An unfold recurrent neural network

(b) Inside of the recurrent block of standard RNN

(c) Inside of the recurrent block of LSTM

Figure 1.12: Illustration of RNN structures

CNN-based Video Classification Models

Videos are another interesting data type from the perspective of dimensionality

in modern deep learning researches. A video is usually treated as a stack of image

sequences with temporal component that can be fed into CNN models. There are two

general concerns with video datasets, one is that loading the entire dataset into local

memory is certainly impractical and second the length of each video within one dataset

normally varies.

Since a video clip can be seen as a sequence of images then a decision on how

should we select the most informative frames as input to the CNN is needed to be

made. [60] proposed four different strategies of combining frames. First one is Single
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Frame that simply takes one frame as input and aggregates predictions across all the

single frames. The Late Fusion concatenates the first and last frames and Early Fusion

takes a contiguous segment from the clip. The last one is Slow Fusion that takes four

partially overlapping contiguous segments and then progressively combines them in

the network. Detailed diagrams of these four approaches can found in Figure 1.13.

[60] also proposed a multi-resolution CNN model for image processing. Two sets of

downsampled inputs, one is half of the original spatial resolution and the other one is

the center region, are fed respectively into two series of convolutional layers and the

activations from both streams are concatenated before pass to the fully-connected layer.

Additionally [60] published an annotated dataset called Sports-1M as an benchmark

for model evaluation.

Figure 1.13: Four strategies for combining information over temporal dimension

through the network [60]. Red, green and blue boxes indicate convolutional, nor-

malization and pooling layers respectively.

[60] is a single stream network using 2D pre-trained convolutions. [124] on the

other hand is a two-stream network consisting of a pre-trained spatial network and a

temporal network for motion context. Motion features are formalized as stacked optical

flow vectors. The input to the spatial net is a single frame of the video and for the

temporal net the input is the optical flow across successive frames. The two streams

are trained separately and then outputs are combined using SVM.
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(a) The inflated Inception-v1 (left) of I3D [16] and the inside of inception module

(right)

(b) Architecture comparison on UCF-101, HMDB-51 and Kinetics

(c) Performance improved using pre-training on Kinetics. Original: No pre-training

implemented; Fixed: features from Kinetics, fine-tune and train the last layer; Full-

FT: pre-training with end-to-end fine-tuning; ∆ shows the difference in misclassifi-

cation as percentage between Original and the best of Full-FT and Fixed.

Figure 1.14

As previously discussed LSTM is capable of sequence processing and captur-

ing temporal information. [30] was built on the idea of using LSTM decoder after

the convolutional operation for video representations. The architecture is trained end-

to-end with two types of inputs: RGB and optical flow. Results showed that by
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averaging predictions over both inputs made it achieved the best performance among

the others. [132] used assembled 3D convolutional networks that was pre-trained on

Sports-1M benchmark dataset as feature extractors for other dataset. During train-

ing 3D convolutional operations were applied as a spatiotemporal cube on the input.

The deconvolutional layers were adopted in order to understand what the network was

learning internally. By conducting methodical research on proper temporal filter length

it demonstrated that 3D ConvNets outperformed 2D ConvNets on various video anal-

ysis tasks. [150] is another work utilizing 3D ConvNets but incorporated with LSTM

as an encoder-decoder architecture for video description tasks. Additionally their work

first introduced attention mechanism for video representations.

Other two-stream networks evolved from [124]. [36] focused on multi-level fu-

sion of spatial and temporal streams. [141] suggested sampling clips sparsely through

the video based on the idea of long-range temporal structure modeling. They also ex-

perimented with typical CNN regularization techniques such as batch normalization,

dropout, etc, to improve the performance of ConvNets on video data. Two new input

modalities were introduced as alternates to optical flow: warped optical flow and RGB

difference. [155] recommended to use an unsupervised architecture to capture motion

information between adjacent frames without explicitly computing optical flow.

As a considerable number of successful architectures for image classification has

been developed over the decades, intuitively we should be able to adapt robust 2D CNN

architectures for temporal data processing. In [16], a Two-Stream Inflated 3D ConvNet

(I3D) is proposed which is built upon on 2D ConveNet inflation. I3D is expanded from

a 2D inception-v1 network. We show the inflated Inception-V1 architecture in Figure

1.14a. [16] conducted several arrangements to complete the expansion. First all the

filters and pooling kernels were boosted by adding an additional temporal dimension

(i.e., a N × N 2D filter became N × N × N). Next a boring-video (simply copying

single frames repeatedly) fixed point was introduced to bootstrap parameters from

pre-trained ImageNet models by repeating the weights of 2D filters N times along the

time dimension and then divided by N for re-scaling. The last step was to pace the
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receptive fields’ growth in space, time and network depth. RGB inputs and optical

flow were trained separately and predictions were averaged during testing.

A new human action video dataset (Kinetics) that has two orders of magnitude

more data than HMDB-51 [64] and UCF-101 [124] is provided for re-evaluation on

state-of-the-art video recognition models. Kinetics contains 400 human action classes

and over 400 examples per class. [16] compared the performance of several well-known

temporal analysis architectures (i.e., LSTM, 3D-Convnet, Two-Stream, 3D-Fused Two-

Stream) with I3D on Kinectics as well as the other two datasets. Details are shown

in Figure 1.14b and results in Figure 1.14c validate that using weights pre-trained on

Kinectics benefits all the models in the comparison scheme.

Deep Learning for Optical Flow Estimation

Optical flow is defined as the instantaneous velocity of the pixel movement on

the image plane. It calculates the change of pixels caused by the movement of fore-

ground objects or the camera in image sequences to capture motion information. Since

it is able to characterize and quantity apparent motion, optical flow estimation has

been studied and widely applied in computer vision tasks, such as object detection

and tracking, video compression, motion-based segmentation. Figure 1.15 shows an

example of optical flow applications on recognizing human actions based on pose rela-

tionships between frames.

The concept of optical flow was first proposed by Gibson in the 1940s. Later on

Horn and Schunck introduced the optical flow constraint equation in 1981 as the basic

algorithm for optical flow calculation. It assumes constant brightness that the pixel

intensity of object does not change between frames. The equation has two unknowns

and thus requires additional constraints in order to find a unique solution. This is

known as the aperture problem in optical flow algorithms. Horn and Schunck then

suggested a global smoothness constraint [49] claiming that the motion speed of pixels

are the same or close to their neighbor pixels in an image.
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Figure 1.15: Examples of classifying actions with optical flow [32]

Lucas and Kanade [78] proposed to calculate dense optical flow using local

windows around points of interest based on the assumption that the flow is essentially

constant in a local pixel neighbourhood. The Lucas-Kanade method deals with the

inherent ambiguity of the optical flow equation and is less sensitive to noise. However

it has trouble detecting large motion that is exceeding the local window. [12] improved

the Lucas-Kanade method by using image pyramid hierarchy on tracking large moving

targets.

Since the work of [49], variational approaches have been leading the development

of optical flow estimation [83, 13, 14]. DeepFlow [143] combined a descriptor match-

ing algorithm with a variational method to handle large displacements. EpicFlow

[112] generated dense matches to initialize variational energy minimization. Tradi-

tional methods of flow estimation often require large and complicated computation

and hence are not suitable for real-time applications. The evolution of CNN-based

flow estimation approaches, on the other hand, detects regions of motion in a more

effective and accurate fashion.
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We first introduce the most commonly used benchmarks on evaluating perfor-

mance of optical flow estimation models. The Middlebury [120] is the first dataset of

real image sequences with independent motions and optical flow groundtruth. How-

ever it only consists of 10-15 image pairs for training and testing which is too small

and insufficient to evaluate CNN-based optical flow models. Examples are shown in

Figure 1.16a. The KITTI [41] dataset is recorded by a moving autonomous driving plat-

form including cameras, laser scanners and other sensors for measurements. The full

benchmark contains optical flow, stereo, video odometry, depth, etc, with groundtruth

annotations. The latest KITTI dataset for optical flow has 200 training scenes and

200 test scenes. As the purpose of KITTI is to support the development of computer

vision algorithms on the task of autonomous driving, motion of distant objects are

not captured (Figure 1.16b. The MPI Sintel benchmark [15] is composed of synthetic

data that derived from a 3D animated short film. It contains long sequences, large and

varied motion, different scene structures and illumination, etc. Motion blur and atmo-

spheric effects are applied on the images rendered from artificial scenes (Figure 1.16c).

The dataset contains over 1000 training image pairs with dense groundtruth.

Fischer et al. [38] first proposed the idea of using a CNN architecture, i.e.

FlowNet, to learn and predict optical flow directly from image pairs. The authors

experimented with two types of implementations to evaluate the learning ability of the

networks. One was to train a single network on stacked input images, named FlowNetS.

The other one, FlowNetC used two subnetworks to process images separately and

then combined their representations at later stage. The two network architectures

were trained and tested on the well-known existing benchmarks (Middlebury [120],

KITTI [41], MPI Sintel [15]) of optical flow estimation as well as a synthetic dataset

created by the authors. Results show that FlowNetC suffered from overfitting and

had difficulties dealing with large displacements. However the two network structures

proposed achieved close error rates comparing to traditional well-performed methods

on optical flow estimation and most importantly using CNNs made it be capable of

transferring the entire learning process onto GPUs which largely reduced the runtime.
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Instead of image warping, LiteFlowNet[53] proposed to use feature warping to

reduce the feature-space distance and thus cut down computational complexity. We

show their network architecture in Figure 1.17. It splits feature extraction and flow es-

timation into two sub-networks, i.e. NetC and NetE. NetC serves as a feature descriptor

that transfers an input image pair into two pyramids of multi-scale high-dimensional

features. NetE consists of a cascaded flow inference that generates flow fields and flow

regularization modules to correct vague flow boundaries. Figure 1.18 presents exam-

ple flow fields generated from different methods on the KITTI[41] benchmark dataset.

LiteFlowNet [53] generalizes better to real-world data than SPyNet [105] and FlowNet2

[55] as it is able to preserve fine details with less artifacts and clearer flow boundaries.

LiteFlowNet [53] also has less training parameters and faster runtime comparing to the

other two CNN-based flow estimation approaches discussed above.

FlowNet [38] has proved the capability of neural networks for predicting optical

flow directly from images but it is still having limitations in real-world applications.

FlowNet2 [55] proposed to improve the performance by stacking multiple networks

with image warping on the second images. They also explored the idea that the order

of data presented during training played an important role in supervised learning and

helped to optimize the network on small motions with small displacements. FlowNet2

[55] outperformed FlowNet [38] in accuracy while maintaining a fast runtime on GPUs

however it introduced a large amount (about 160M) of parameters and hence increased

the computational complexity. Ranjan et al.[105] proposed to use a spatial pyramid

network architecture that a deep neural network was trained at each level of the pyra-

mid to estimate a flow instead of solely training one deep network. Comparing to

FlowNet2 [55], SPyNet [105] drastically reduced the numbers of parameters in the

network but its accuracy was only comparable with FlowNet [38].
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(a) Middlebury [120]

(b) KITTI [41]

(c) MPI Sintel [15]

Figure 1.16: Example data and groundtruth of the optical flow benchmarks
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LiteFlowNet2 [52] optimized the network structure of LiteFlowNet [53] in the

following aspects: First, it has a reduced numbers of pyramid level in NetE to decrease

computation time spent on the flow decoder; Second, the depth of NetE is limited with

two additional convolutional layers to compensate the loss; Third, a simplified pseudo

flow inference is introduced to refine the estimates. LiteFlowNet2 [52] runs 2.2 times

faster and achieves higher flow accuracy on the KITTI [41] benchmark dataset than

LiteFlowNet [53].

Figure 1.17: The network structure of LiteFlowNet [53]

(a) From left to right:KITTI image overlay, SPyNet[105] FlowNet2[55] LiteFlowNet[53]

(b) From left to right:KITTI image overlay, SPyNet[105] FlowNet2[55] LiteFlowNet[53]

Figure 1.18: Examples of flow fields from different methods on the KITTI benchmarks
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Chapter 2

IMAGE-BASED MARINE SPECIES POPULATION MONITORING

The Atlantic sea scallop (Placopecten magellanicus), pictured in Figure 2.1a, is

highly important economically. Although mobile, it is not migratory, and it is com-

monly found on the sea floor in the mid-Atlantic at a 35 - 100 m depth on sand and

gravel sediments. Wild scallops are typically caught using a dredge dragged along

the seabed, accurate and timely assessments of local population numbers and size/age

distributions are important for setting sustainable quotas. Historically, censuses have

been conducted by systematically sampling different locations by dredging, but recently

there has been great interest in increasing the efficiency and coverage of this process

(including for other species) through analysis of images obtained by fixed, towed, and

AUV-borne cameras. Thus far, such analysis has been either manual [113, 37] or pri-

marily based on hand-selected features [6, 26, 59]. In this chapter, we demonstrate the

efficacy of applying deep learning methods to achieve fast and accurate scallop detec-

tions over a range of substrates, despite suboptimal image quality. In the first section,

We are concerned primarily with the problem of detection, or placing bounding boxes

around an unknown number of scallops in each image as illustrated in Figure 2.1c. We

studied the behavior and performance of different CNN-based visual detectors on the

scallop dataset. In the second section, we extend our work to multi-class classification

tasks. Because dredging can cause habitat damage and mortality among uncaught

scallops, detected scallops are further categorized as healthy vs. compromised. Also,

other creatures such as starfish, monkfish, crab are of scientific interest as well in order

to investigate the predator-prey relationships.
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(a)

(b) (c)

Figure 2.1: (a) P. magellanicus; (b) Raw seabed image taken from AUV; (c) Corre-

sponding image after contrast enhancement, with scallops manually annotated

2.1 CNN-based Sea Scallop Detection

2.1.1 Background on Image-Based Benthic Creature Detection

A fixed underwater camera was used for decapod (e.g., lobster) detection in

[6]. A top-hat transform was applied to images acquired at hourly intervals, followed

by thresholding of the distance between the red and green color channels to obtain

a binary saliency image. Fourier descriptors and SIFT features were extracted on

large connected components, which were then classified using partial least squares

discriminant analysis.

An early approach to scallop detection relied on their regular shape, employing

a Hough transform to look for circles [33]. Kannappan et al. [59] presented a layered

saliency-based approach to identifying scallops in AUV images in which top-down visual

attention was followed by segmentation, shape extraction, and classification. The image
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analysis pipeline was hand-tuned, and their results showed a high number of false

positives associated with acceptable recall levels.

Another computer vision system for scallop detection, based on the object iden-

tification paradigm, was presented in [26]. Images collected from the HabCam towed

camera system [130] were subjected to illumination and color correction, then likeli-

hood images based on grayscale and color histograms were formed, and finally four

hand-selected operators were applied to identify candidate regions. For each candidate

region, a variety of color, texture, and edge features were extracted and fed to a series

of cascaded AdaBoost classifiers [39, 119] for the final detection decision. The multiple

classifiers were tuned to different substrates and scallop types, but the results were

generally quite good.

2.1.2 Problem Statement

We started by focusing on simply identifying healthy scallops, making the task

a 1-category detection problem.

Our strategy is to leverage access to an existing dataset of 190, 000+ manually-

annotated images captured in scallop-rich waters in order to learn a sufficiently robust

visual representation of P. magellanicus that the system can recognize individual scal-

lops at different stages of their life cycle and on a wide variety of substrates. The images

in the dataset were collected by a downward-pointing digital camera in the nose of an

AUV (shown in Figure 1.1) moving at an altitude of a few meters above the seabed.

Despite illumination with a flash strobe to compensate for low ambient light at the

operating depth of 50+ m, the raw images are quite dim ( a sample is shown in 2.1b)

and the scallops are often difficult to discern even to human eyes. Other confounding

issues include the small size of the scallops in the image; non-uniform illumination or

vignetting from the flash; a wide range of similar-looking features such as clams, small

rocks, shell hash and sediment textures. partial burial of some scallops in sand or

gravel; and occlusions by swimming creatures. Despite these difficulties, we demon-

strate that by training deep learning detection networks with minimal modifications on
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just a fraction of the annotated dataset, the system can achieve superior performance

on the task. We evaluate and compare the performance of YOLOv2 [109], YOLOv3

[110] and RetinaNet [72] detectors on the scallop dataset. All the three networks

mentioned have been proved that they have the ability to work extremely well and at

high speed on benchmark datasets such as PASCAL VOC [34], MS COCO [70] crossing

classes of objects as diverse as people, bicycles, chairs and birds. Training on scallops is

not completely straightforward, however, as the available annotations contain approxi-

mate position information only and must be converted to precise bounding boxes. One

novelty of this work is that we proposed a method for automatically upgrading these

annotations by training a separate denoising auto-encoder network, thereby enabling

efficient augmentation of the training data.

2.1.3 Scallop Dredging Dataset

Since 2014, 5 Cruises of 95 missions were conducted off the east coast of the

United States at bottom depths of 50-80 m in two areas (shown in Figure 1.2a): the

Elephant Trunk Closed Area (ETCA) and Nantucket Lightship Closed Area (NLCA),

for a Before-After Control-Impact (BACI) [126] study of the effects of dredging on

incidental scallop mortality [37].

During the study each area was divided into 3 sites, and at each site 3 types

of experiments were run, denoted by A, B, and C. A experiments consisted of a pre-

dredging AUV mission, followed by 1 dredging tow by a scallop fishing vessel, and

then a post-dredging AUV mission hours later to assess the effects of the dredging. B

experiments were the same, except that the dredge was towed through the site 5 times

for a heavier impact. C experiments were controls where no dredging was done, but

the AUV went on tow missions. Over the course of the study, ETCA was surveyed

twice and NLCA once, resulting in a total of 54 AUV missions which we refer to as

M1, M2, ..., M54.

In order to photographically cover the area where the dredging occurred, each

AUV mission followed a preset ”lawn-mowing” pattern as depicted in Figure 1.2b.
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Using its inertial navigation system (INS) and Doppler velocity log (DVL) for state

estimation, the AUV followed 10 parallel lines 2 m apart and 750 m in length (ETCA),

or 14550 m long lines (NLCA), at an altitude of 2.5 m above the sea floor. Given the

AUV camera’s intrinsic parameters and altitude, each raw 1280×960-pixel image such

as that shown in Figure 2.1b represents a seabed area of roughly 1.88 m× 1.45 m (an

area of 2.73 m2). The images were captured at 3.75 Hz with the AUV traveling at

a speed which resulted in an average overlap of 45% between consecutive images in a

line (Figure 1.2c). Images were not captured while the AUV was turning to begin the

next line, so there is a discontinuity between each line of image.

2.1.4 Post-processing and Manual Annotation

Due to the depth of the AUV and the limitations of the strobe used to illumi-

nate the seabed, raw captured images exhibit low contrast that makes scallop detection

difficult (Figure 2.1b). Accordingly, brightness and color contrast were enhanced on

every image using one of two post-processing procedures: either a multiscale retinex

algorithm or a stretch contrast function which works on each color channel indepen-

dently, as detailed in [37]. A sample result of contrast enhancement is shown in Figure

2.1c.

In order to obtain ground-truth information for the dataset, a team of 15 student

annotators were trained to identify scallops (as well as other creatures) and mark them

as healthy or compromised using an online annotation system [37]. Each annotator was

directed to click somewhere inside the shell perimeter, but not necessarily the center.

We call this a rough position. The green dots (inside the purple boxes) in Figure 2.1c

are a sample of these original scallop position annotations. At ETCA sites 1 and 2,

images were downsampled by 2 before annotation - every other image was skipped.

However, annotating a single image took an average of almost 30 seconds, so to speed

the process the images were downsampled by 8 before annotation at ETCA site 3 and

all NLCA sites. In total, 171,860 images were annotated in this fashion during the

study at a cost of almost 1,150 person hours [37].
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In order to train the detector networks, each scallop needs to have a tight

bounding box. For this work, we create a tool to manually upgrade the existing scallop

rough position data to precise position and scale. Bounding boxes were constrained

to contain an existing rough position, and allowed to be non-square. Where scallops

appeared to be partially buried or not completely inside the image, the annotator only

indicated the visible part.

We applied this tool to M49, a post-dredging mission from NLCA containing

2,430 images with 4.267 original rough position annotations of all types of creatures.

1,736 of these images contained at least one healthy scallop, of which there were 3,863

total. Precise bounding boxes were added for these; sample for one image are shown

as purple rectangles in Figure 2.1c. This entire process took roughly 20 hours.

Other missions which we will reference from the original study dataset:

• M46: M49’s pre-dredging twin with 1,857 annotated images that contained at

least one healthy scallop; there were 4,835 healthy scallops in all.

• M6: An ETCA mission with 5,204 healthy scallop containing images (because of

less downsampling); 8,663 healthy scallops total.

2.1.5 Automatically Upgrading Rough Positions to Bounding Boxes

Many studies have supported the rule of thumb that machine learning perfor-

mance is improved through a larger and more diverse training set, both in general

[8, 45] and most recently for CNN-based object detection/recognition [127]. One can

also observe on the leaderboard for the widely-used PASCAL VOC detection challenge

that mAP scores increase dramatically for algorithms which use COCO + PASCAL

data (100K examples) vs. PASCAL alone (10K examples) [34, 70].

In our dataset, the rough positions in the entire original set of annotations

represent one to two orders of magnitude more training examples than M49 alone, yet

the detection networks training requires that each of these be converted to a bounding

box. Based on our experience with applying the software tool described above to M49,
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doing this manually for the entire dataset could take up to 1000 hours, almost as much

as time as the original annotation project.

Instead, we propose to use a neural network to automatically upgrade the orig-

inal rough positions to bounding boxes. We found that a 160× 160 subimage centered

at a rough position is sufficient to completely contain any size scallop in our dataset

(see the first row of Figure 2.2 for several sample subimages), so the task of outputting

exactly one bounding box for each subimage known to contain a scallop is equivalent

to pure localization [122]. The difficult work of deciding whether there is an object at

a particular AUV image location, and what kind of object it is, has already been done

by human annotators, so we want to exploit this.

Directly regressing a bounding box (i.e., outputting coordinates) from an image

is a highly non-linear and difficult-to-learn mapping [131, 98]. We were unsuccessful in

our attempts to do it with a variety of convolutional front-ends, including Darknet-19,

attached through several fully-connected layer to an (x,y,w,h) output layer. Rather, we

borrow an idea from [98], which labels joint locations in images of people, and train the

network to output a scallop likelihood image, or “heatmap”, where high-value pixels

belong to the scallop and low-value pixels to the background. In [98], at training time

each ground truth joint position is indicated by a fixed-variance Gaussian (each joint

has a separate heatmap) and the loss is the sum of squared differences. At test time,

each joint’s predicted heatmap is post-processed to obtain the most likely joint location

as the brightest pixel location. We want to generalize this to learn masks of scallop

pixels, such as shown in row 2 of Figure 2.2.

One way to think of the heatmap network is as a kind of denoising auto-encoder

[44]. Input images can be regarded as clean scallop masks transformed and corrupted by

appearance + lighting + background variation, plus artifacts introduced by the contrast

enhancement stage. The network must learn to extract the essential information-the

geometric attributes of the scallop-form which it can reconstruct the original mask

minus any image “noise”. Here we use a simple auto-encoder architecture consisting of

an AlexNet CNN [63] encoder (5 convolutional and 3 max-pooling layers with ReLU
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activations), 2 fully-connected layers of 4096 units each, and a decoder network that

inverts the AlexNet structure through a series of upsampling “deconvolutions”.

Figure 2.2: (1st row) Sample scallop subimages from M49 test set centered on rough po-

sition annotations with ground truth bounding boxes overlaid; (2nd row) Correspond-

ing circular masks used to train heatmap neural network; (3rd row) Corresponding

outputs of heatmap network

2.1.6 Training Procedures

Both of the YOLO networks and heatmap networks were trained and tested us-

ing the Darknet open source neural network framework [107]. RetinaNet framework

was cloned from [40]. We modified the configuration files where the network architec-

tures are defined to change the number of filters of the last convolutional layer because

the number of object categories differs from the 20 classes of the original PASCAL
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VOC task. Unless noted, all other parameters such as learning rate, batch size, etc.

were not changed, and training started from random weights.

2.1.6.1 Heatmap Network

Following [98], we first train on fixed-radius circular masks(r = 10) to learn

position only. Example subimages were taken from the HighRes training set (see sec-

tion 3.5.2 below), with each one randomly distorted geometrically and photometrically.

This phase lasted 50K iterations with a learning rate of 10−4. Then, because of the

need for a scale estimate, there is a second phase of fine-tuning in which the targets

are circles scaled to match the maximum dimension of each scallop, as shown in row 2

of Figure 2.2. When a scallop is only partially visible at the edge of the image, such as

in column 3 of Figure 2.2, we draw the entire inferred scallop mask and background.

This phase lasted 475K iterations with the learning rate dropped to 10−5.

At test time, the scallop heatmap (examples of which are shown in row 3 of

Figure 2.2) is threshold to make a binary mask and the bounding box of the largest

connected component is output. The threshold was chosen to maximize the median

overlap between the predicted and ground truth bounding boxes as calculated by the

intersection over union (IoU) formula over the training set.

2.1.6.2 YOLOv2 Detector Network

We conducted four major experiments varying the training and structure of the

YOLOv2 detector network. The first three experiments below used only the M49 an-

notations, while the fourth incorporated data from M6 and M46.

NoEdges

In this experiment any AUV image with a scallop too close to an edge (i.e, the distance

from any part of the bounding box to any edge is ≤ 10 pixels) was discarded. This

was under the assumption that cropped bounding boxes would undermine the learning

process by suggesting incorrect dimensions for partially visible scallops. After filtering,
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the dataset was made up of 1,664 images containing 3,436 scallops, or 81.6% of the

original M49 data. The images were split 80/20 for training/testing: 1,331 images (and

all of their scallops) in the training set, and 333 images in the test set. The YOLOv2

network was trained for 10K iterations with a batch size of 64. The entire training

process took 12.5 hours.

Edges

Here all of the original scallops in the M49 dataset were used without regard for image

edge proximity. Again using an 80/20 split, the training set has 1,389 images with

3,121 scallops and the test set had 347 images with 742 scallops. We trained YOLOv2

with this approach for 17K iterations.

HighRes

In order to better resolve small scallops, we doubled the width and height of the net-

work’s input layer to 832 × 832 to preserve image detail. This allows the network to

“see” approximately 61% of the original AUV image information instead of 14% as in

the first two experiments. The total number of images and train/test split was the

same as for the Edges network. The network was trained for 20K iterations.

AugmentedHighRes

The M49 manual bounding box annotations used to train HighRes were augmented

with bounding boxes generated automatically by the heatmap network by upgrading

all rough position annotations from M46 and M6. This amounted to a total of 13,498

scallops from 7,601 images. YOLOv2 training was performed as fine-tuning from the

HighRes 4K weights, continuing for another 10K iterations. This additional data

constitutes more than 4× the size of the HighRes training set alone.
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2.1.6.3 YOLOv3 Detector Network

We trained YOLOv3 detection network on a larger dataset consisting of 67

missions from cruise 1, 3 and 5. There are 97,344 images containing 373,806 scallops

and each image has at least 1 healthy scallop. We mixed raw images (shown in Figure

2.6g - 2.6i) from cruise 5 and Retinex-enhanced images (shown in Figure 2.6a - 2.6c)

from cruise 1 and 3 for this dataset to verify the robustness of the network across both

types of image. The images were split 80/20 for training/testing: 77,875 images with

300,927 scallops in the training set and 19,469 images with 72,879 scallops in the test

set. The YOLOv3 network was trained for 20K iterations.

2.1.6.4 RetinaNet Detector Network

In order to perform a fair comparison of RetinaNet and YOLO detectors, we

trained the RetinaNet detector on the same datasets as mentioned above, including

validation on a separate mission. Additionally, we added background images as hard

negative examples as suggested in the [72] paper to evaluate the detector’s effectiveness

on addressing the issue of foreground-background class imbalance encountered during

training.

We also evaluated RetinaNet on a 2-class classification problem. Two categories

are Alive Scallop and Sea Star. We consider this as a preliminary experimentation for

our mortality rate estimation in Section 2.2.1.

Primitive groundtruth information indicated objects of interest using line seg-

ments. Noted that each line segment is not necessarily across the center of object.

Thus we first programmed to convert the original scaled annotations to groundtruth

bounding box annotations and translate YOLO-formatted coordinates into required

format for training the RetinaNet detector.

Datasets used for the RetinaNet detector experiments:

• YOLOv2 Edges dataset: 1,736 images in total from the M49 mission, 1,389 images

for training and 347 images for testing.
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• YOLOv3 dataset: 97,344 images from 67 missions, 77,857 images for training

and 19,946 images for testing.

• 1075 background images, i.e.images do not contain any object of interest, from

the M49 mission.

• Scallop-Star dataset: 81,363 images from 67 missions of cruise 1,3,and 5 contain-

ing 223,409 scallops and 7,452 stars.

We used a train/test split ratio of 80/20 for all datasets. Each model was trained

using ImageNet pre-trained weights and ResNet50 as backbone. All training processes

lasted for 50 epochs.

2.1.7 Results

2.1.7.1 Heatmap

We evaluate the heatmap network’s ability to accurately upgrade rough positions

in a few ways. At the end of training, the mean IoU between the predicted and ground

truth bounding boxes on the M49 test set is 0.80, the median is 0.82, the min is 0.35,

the max is 0.99, and 97.4% of upgrades are “correct” using the standard threshold of

IoU ≥ 0.5. For comparison, on the training set itself the mean IoU is 0.90, median is

0.92, min is 0.36, max is 1.0, and 99.6% of upgrades are correct.

The predicted bounding boxes are robust to different backgrounds from other

missions not seen during training. In particular, M6 was run in a completely differ-

ent area of the Atlantic, and many of the images have features not seen in M46/49.

A sample of the bounding boxes created for this mission are shown in Figure 2.3.

Another piece of evidence is that when the YOLOv2 detector is trained with these

automatically-created bounding boxes in AugmentedHighRes, performance as mea-

sured by average precision improves modestly (see below).
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Figure 2.3: Example annotation upgrade results from the heatmap network on M6 im-

ages. Green dots indicate the rough position annotations, pink boxes are the predicted

bounding boxes. Because the original annotators did not mark them, the seemingly

missed scallops in (f) are not upgraded.

2.1.7.2 YOLOv2

Compiled with GPU acceleration and running on a machine with an NVIDIA

Titan X GPU, each AUV image took from 70 to 100 ms to process for detections by

the YOLOv2 network. Precision and recall for all detection experiments are plotted in

Figure 2.5a. The NoEdges network exhibits an average precision (AP) of 0.782. To

help assess how “good” this is, for comparison the easiest category for PASCAL VOC

2012 [34] according to the public leaderboard is airplane, for which YOLOv2 demon-

strates the highest AP of 0.695. This makes our result quite competitive. However, it

is harder to train on multiple classes rather than only one class as we do. Furthermore,

when allowed to train with PASCAL as well as COCO [70] data, the best algorithm

(not YOLOv2) reaches 0.95 on airplane. Also, it is clear that even though scallops

near the image edges were not included in NoEdges s training, the network is still
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capable of finding them. However, they are not in the test set and thus are counted

as false positives. Including these objects during training and testing lifts the results

for the Edges network, resulting in its AP reaching a maximum of 0.818 after 10K

iterations.

For the HighRes network, the AP peaks after 4K iterations at 0.836, a notable

improvement over the lower-resolution versions of YOLOv2. The measured AP drops

later in the training cycle, possibly due to overfitting. AugmentedHighRes lifts this

score slightly, achieving an AP of 0.847 after 9K training iterations. We believe that

there is considerable headroom to boost this number by including substantially more

missions in the training set.

Figure 2.4 shows some example detection results on the test set of the HighRes

network. For these images, a confidence threshold of 0.2 was chosen, corresponding

to a precision of 86% and recall of 54%. Green boxes are the ground truth, pink

boxes denote correct detections by the network, and purple boxes are false positives.

Numbers written next to each pink or purple box indicate how confident the network

is that the object inside the box is indeed a healthy scallop.

After reviewing many of the detection images such as those shown in Figure 2.4,

we believe that the PR curves in Figure 2.5 (a) may be under-reporting performance

due to some erroneous annotations. Some of the false positives may actually be healthy

scallops that were overlooked in the initial annotation process–for example, the objects

with a confidence score of 0.78 in Figure 2.4 (a) and a confidence score of 0.34 in Figure

2.4 (b). Conversely, in Figure 2.4 (c) it is hard to argue that the small green box which

counts as a false negative actually contains a scallop. Also causing false negatives,

some scallops may be falsely marked as healthy when they are in fact compromised, as

the green boxes in Figure 2.4 (e) and (f) would seem to show. Errors in the training

set are not so critical, but certainly the test set should be cleaned carefully to better

assess algorithms.
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Figure 2.4: Example detection results from the HighRes network on the M49 test

set with detection confidence indicated (IoU threshold = 0.2).Green dots indicate the

rough position annotations, pink boxes are the predicted bounding boxes. Because the

original annotators did not mark them, the seemingly missed scallops in (f) are not

upgraded.

Validation on a separate mission

We implemented a separate testing experiment for HighRes, which was trained

on M49, tested on M46 data. Images in this dataset are only annotated with rough

position information, so we cannot compute IoU’s in the standard manner. Instead,

we see if the annotated rough position is simply inside a predicted scallop bounding

box as the new criterion of correct detection. To do this, we changed the IoU threshold

to 0: if the rough position is inside the prediction box, the IoU would be greater then

zero. Otherwise, the IoU would equal to zero. Following this protocol, the network

achieves an AP of 0.926, which is encouraging, but really just an upper bound on true

performance.
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(a) (b)

Figure 2.5: (a) Precision-Recall (PR) curves of different YOLOv2 detection approaches,

blue is NoEdges with average precision(AP) = 0.78, red is Edges with AP =0.82, yellow

is HighRes with AP = 0.84, green is AugmentedHighRes with AP = 0.85; (b) PR curve

of YOLOv3 detection approach with AP = 0.824.

Comparison to detectors from the literature

[26, 59] used different datasets, so it is difficult to make a fair comparison with

their results. [59] only gives two precision and recall data points which indicate a high

number of false positives for their chosen parameters: on their “Dataset 1”, they report

1% precision with a recall of 73%, and on “Dataset2” they report 3% precision with

a recall of 63%. From a glance at Figure 2.5 (a), our HighRes network reaches 85%

and 93% precision at those recall levels, respectively.

[26] reports considerably more success, getting precisions ranging from 28% to

99% and recalls ranging from 69% to 94% with their “general” detector, depending on

which subsets of data they tested on. Their results were improved slightly when first

categorizing the substrate of the entire image and then using a specialized detector,
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which we do not do. Using a multicore processor, they are able to process the images

at a rate of 10 Hz, just a little slower than this system. Despite the smaller size of

scallops (due to the camera intrinsics) and lower contrast of our images, our results are

still competitive.

2.1.7.3 YOLOv3

The YOLOv3 network achieves an average precision (AP) of 0.927 which out-

performs the best result among the YOLOv2 networks (AugmentedHighRes network

that has the highest AP of 0.847). Precision and recall for this network is plotted in

Figure 2.5 (b). We figure that such a significant improvement happened mainly for two

reasons: One is that YOLOv3 is intrinsically a better detection network with a deeper

architecture than YOLOv2 in the respect of accuracy. As YOLOv3 makes predictions

at 3 different scales throughout the network and concatenates feature maps by up-

sampling, it is able to capture more meaningful semantic information that helps with

detecting small objects. On the other hand, the dataset we used for this experiment is

50x larger and has 100x more scallops than what we used for YOLOv2. Having more

data for training would clearly improve the overall performance.

Figure 2.6 shows some example detection results of the YOLOv3 network. The

confidence threshold is set to 0.1 to filter the predicted detections. Groundtruth is

labelled with blue boxes and predictions output from the network are marked in purple

boxes with detection confidence scores on top. The first row in Figure 2.6 are the

examples of Retinex-enhanced images where the third row shows the example of original

raw images. The second and fourth rows are the corresponding prediction images which

show that the network is capable of maintaining stable performance on both types of

input resolutions.

In Table 2.1 we show the detection results by scallop density. The formulas and

variables are set as following:

• N = the number of groundtruth annotations in an image
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• D = the number of scallops predictions in an image

• TP = the number of predictions that has a confidence ≥ 0.5

• Precision = TP / D

• Recall = TP / N

Scallops/Image Precision = TP/D Recall = TP/N Num at this density

≥ 1 0.812 0.924 19469

≥ 5 0.861 0.940 3551

≥ 10 0.850 0.953 801

≥ 20 0.828 0.957 269

≥ 50 0.790 0.962 120

≥ 100 0.809 0.957 68

Table 2.1: Precision and recall values of YOLOv3 detection by scallop density

To clarify we use an IoU threshold of 0.5 for analyzing detection results by

scallop density and a prediction is considered as correct if it has a confidence score

large than or equal to this threshold (0.5). Precision measures the fraction of correct

predictions over all predictions and recall indicates how much of the groundtruth were

found by the network. Both of these numbers were computed individually for each

image, then averaged over all images. Any images with 0 detections have undefined

precision, so these were only counted in the recall computation. From table 2.1 (and

Figure 2.6 (l)) it appears that the network works well over a range of densities, finding

almost 96% of the scallops in images with over 100 scallops while maintaining 81%

accuracy.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.6: Example detection results of YOLOv3 (IoU threshold = 0.1); (a)-(c)

Retinex-enhanced images; (g)-(i) Raw images; (d)-(f) and (j)-(l) are corresponding

detection output images. Blue boxes are the groudtruth, pink boxes are the prediction

with detection confidence on top.
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2.1.7.4 RetinaNet

We summarize the performance of the detector on single-class detection prob-

lems in Table 2.2 where we can find that by adding background images for training

increases the average precision (AP) from 0.807 to 0.814, closing to the AP (0.818)

achieved by YOLOv2 training on Edges dataset only. However, when validated on a

separate mission, RetinaNet detector achieves an AP of 0.747 which is approximately

18 percentage points lower than YOLOv2. Objectively, we used a different protocol

of computing the Intersection over Union (IoU) for YOLOv2 since we did not obtain

the appropriate groundtruth information for this mission at the time we conducting

the experiment. This may slightly increase the number of true positives while eval-

uating the performance of YOLOv2 on the task. A fair comparison can be done by

re-evaluating YOLOv2 using the standard manner of IoU computation. Nonetheless,

YOLO detectors outperformed RetinaNet detector in all 4 experiments.

Detector Edges dataset
Edges dataset

+ background

Validation

on M46
YOLOv3 dataset

RetinaNet 0.807 0.814 0.747 0.889

YOLOv2 0.818 – 0.926 –

YOLOv3 – – – 0.927

Table 2.2: Summary of model performance on test sets

Precision-Recall (PR) curves of RetinaNet training on YOLOv2 Edges and

YOLOv3 datasets are shown in Figure 2.8a and Figure 2.8b respectively. Exam-

ples of detection results on the test sets can be found in Figure 2.7a - 2.7f with

IoU threshold of 0.2. We show that RetinaNet is confused alive scallops with other

objects that have similar appearances or features, such as small orangy rocks( Figure
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2.7b, 2.7d, 2.7e), sand dollars ( Figure 2.7i), therefore misclassified them as positives.

Meanwhile, further improvement on extracting objects of interest from low-contrast

background is needed. Figure 2.7j - Figure 2.7l indicate that RetinaNet is not as ca-

pable as YOLOv3 of detecting objects in high density. Even on a lower IoU threshold

(0.2 for RetinaNet, 0.5 for YOLOv3), RetinaNet detector still missed a considerable

amount of true positives. Again this can be caused by the struggle of subtracting

enough accurate background information. On the basis of performance comparison

between RetinaNet and YOLO detectors we can conclude that YOLO intrinsically

outperforms RetinaNet on single-class detection problem.

For the 2-class classification problem, We monitored the losses as shown in

Figure 2.9(d). To clarify, regression loss implies the difference between predictions

and actual observations; Classification loss measures how accurate the network is of

classifying objects into the correct categories. Figure 2.9 (a) - (c) shows the example

predictions: the white lines and rectangles indicate the original annotations; Green

boxes are the groundtruth bounding boxes; Red and Yellow boxes are the predicted

bounding boxes for Alive Scallop and Sea Star respectively.

Using a IoU threshold of 0.2, the mean average precision (mAP) achieved 0.732

where the average precision (AP) of Alive Scallop is 0.903 and of Sea Star is 0.561. It

is not surprising that the classifier performs notably better on one category than the

other since the number of Alive Scallop in this dataset is approximately 30x more than

the Sea Star. In Figure 2.9 (a) we can see that the network neglected 2 true positives

in the Sea Star class (showing in white boxes on the left of the image). Apparently

having a balanced dataset (adding more examples of Sea Star, etc.) is the key factor

to improve the classification accuracy. This issue is further addressed in Section 2.2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.7: Example detection results of RetinaNet (IoU threshold = 0.2): (a)-(f) Pre-

dictions on YOLOv2 Edges test set; (g)-(l) Predictions on YOLOv3 test set; Green

boxes indicate the groundtruth and red boxes are the predictions with detection con-

fidence on top.
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(a) PR curve of RetinaNet on the YOLOv2 edge dataset

(b) PR curve of RetinaNet on Cruise 1+3+5 dataset

Figure 2.8
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(a) (b) (c)

(d)

Figure 2.9: (a)-(c): Example detection results of RetinaNet on 2-class classifica-

tion: white lines and rectangles indicate the original annotations, green boxes are

groundtruth, red and yellow boxes shows the predictions for Scallop and Star respec-

tively; (d):Training losses.
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2.2 Multi-class classification

From our previous experiments, we see that CNN-based visual detectors have

the ability to identify small objects that only occupy a fraction of an entire image

with high accuracy as well as at real-time speed. To extend our work on population

monitoring, we developed multi-class classification models to estimate mortality rate

of sea scallops as well as including other relevant creatures for a pray-predation study.

2.2.1 Mortality Rate Estimation

In our previous discussion, the dredging approach can result in increasing scallop

incidental mortality when the scallop shells are fatally damaged during the process or

being exposed to non-suitable environments that surpass the lethal limit for scallops.

In order to further improve the BACI study, compromised (dead) scallop count is

indispensable to be considered in our detection schema. Additionally the results from

our single-object detection experiments in Section 2.1 showed that the false positives

contained a certain amount of compromised scallops that were misclassfied as alive.

Therefore adjusting our detection algorithm to a classification problem including the

dead category would support reducing the number of false positives in the alive class

from our previous experiments. Provided with adequate groundtruth labels in the

dead category, we then developed a 2-class classifier on both of the categories. The

motivation behind this experiment can be summarised as: a). Analysis on compromised

scallops count can further provide critical statistic information for dredge-included

incidental mortality rate estimation; b). Allowing the network to learn on features of

compromised scallops would help with improving the detection performance by better

distinguishing between healthy and unhealthy scallop.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 2.10: (a)-(h): Example of compromised scallops; (i): Star preying on scallop;

(j): Monkfish.

Dataset Description

Examples of compromised scallops are shown in Figure 2.10. Scallops that have

broken shells or were crushed were labeled as dead (Figure 2.10f, 2.10c). Inverted

scallops (Figure 2.10h, 2.10b) were also considered as compromised since healthy

scallops would always have their right (darker) valve facing upward and left (white-

ish) valve facing down to the seafloor. And healthy scallops are always able to quickly
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flip back to normal when inverted. Dredging can often cause the inversion leaving the

scallops damaged or being vulnerable to predation. Single shells (Figure 2.10d) were

noted as compromised as well. As of conducting this experiment, 18,461 dead scallops

were annotated contained in 12,293 images from 32 missions. 37,423 scallops of this

dataset were labelled as alive. The images were split 80/20 for training/testing: 9,834

images (and all of their scallops) in the training set, and 2,459 images in the test set.

Training Architecture and Procedure

We considered both YOLOv3 and YOLOv4 architectures [107] as well as their

lightweight versions (i.e. YOLOv3 tiny and YOLOv4 tiny) as our classifier. YOLOv3

uses Darknet-53 (Figure 1.7c) as the feature extractor and stacks another 53 layers

on top of it for the task of detection resulting in a 106 fully convolutional underlying

architecture (Figure 2.11a). The YOLOv4 (Figure 2.11b) consists of the CSPDark-

net53 backbone, a spatial pyramid pooling module, a PANet path-aggregation neck

and the YOLOv3 head giving us a complete 161-layer architecture. YOLOv3-tiny

(Figure 2.12a) and YOLOv4-tiny (Figure 2.12b) are compact versions of YOLOv3

and YOLOv3 respectively, with simpler structure and reduced parameters. The num-

ber of convolutional layers in the backbones are largely scaled down producing a 23-

layer structure for YOLOv3-tiny and a 37-layer structure for YOLOv4-tiny. For small

datasets, the compressed network architectures are convenient for fast training and

detection without the need of huge memory usage.

In addition to experimenting with different network structures, we explored

the influence of batch size on training dynamics. Batch size decides the number of

training samples propagating in one forward pass and is one of the most important

hyperparameters that controls the error gradients estimation in training modern neural

networks. Larger batch size means greater gradient updates which may make the model

take longer to converge and too large of a batch size may result in poor generalization

to new datasets. On the other hand having a proper large batch size allows us to take
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advantages of the parallelism of GPUs to speed up the training process. Small batch

size increases the computational costs but is able to provide higher training stability

and better generalization performance due to its regularization effect by adding noise

to the training data. We trained the networks on different batch sizes (i.e. 32, 64, 128)

for 20K iterations. Input images were resized to 832 x 832 (instead of 416 x 416 by the

default setting) to boost up the detection accuracy with higher input resolution.

(a)

(b)

Figure 2.11: The YOLOv3 (a) and YOLOv4 (b) network architectures [61].
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(a) (b)

Figure 2.12: The YOLOv3-tiny (a) [5] and YOLOv4-tiny (b)[56] network architectures.

Results

We used the test accuracy to interpret the generalization gap of each model.

Table 2.3 reveals the average precision (AP) of each class, mean average precision

(mAP) across 2 classes and the detection speed (fps) of being compiled and running

with GPU acceleration on 3 NVIDIA GeForce GTX 1080 Ti GPUs. The IoU threshold

was set to 0.2 during testing. From Table 2.3 we can see that the lightweight model

structures fitted the data better than the full-sized models given the size of our dataset.

AP for the alive class were generally higher than the dead class among all classifiers

as there were 2x more alive examples in the dataset and the dead contained disparate

features. And for different model structure, the optimal batch size alters, for instance

batch size of 32 worked the best for YOLOv3 whereas large batch size (i.e. 128)

increased the AP, mAP for YOLOv4. This further confirmed that the optimal batch

size is necessary to be experimented with in order to maximize the process capacity.

Figure 2.13 illustrates the training curves of the YOLOv4-tiny models on different
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batch sizes where we can see that smaller batch size converges faster but larger batch

size is able to provide stability dusting training under the same learning rate. YOLOv4-

tiny outperformed all the other models and with optimal batch size of 128, the AP

achieved 0.734 and 0.888 for dead and alive classes respectively. The mAP achieved

0.811 with IoU threshold of 0.20. We further trained this model lowering the ignore

threshold from 0.7 to 0.5 which controls the scale of detection bounding boxes involving

in the loss calculation. The mAP slightly increased to 0.815 with AP of 0.740 and 0.890

for dead and alive classes respectively.

Figure 2.13: YOLOv4-tiny training curves of different batch sizes

In Figure 2.14 we show the example classification results from our best model

(i.e. YOLOv4-tiny with ignore threshold = 0.5) on the test set with confidence thresh-

old of 0.25, corresponding to a precision of 73% and recall of 84%. Green boxes indicate

the ground truth, purple boxes are predictions for the alive class and pink boxes are

predictions for the dead class with detection confidence indicated on top. It demon-

strates that the network is capable of distinguishing compromised scallops from healthy
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ones. We also observed some labeling inconsistency and ambiguity among the ground

truth annotations. For example, On the top left corner of Figure 2.14e the scallop

predicted as alive with a confidence score of 85% is labeled as compromised however it

shares similar characteristics with the one at its bottom right with confidence score of

96% which is labeled as healthy. The one on the top of Figure 2.14g predicted as dead

with confidence score of 37% is labeled as healthy but appears like having a broken

shell.

YOLOv3 YOLOv4

32 64 128 32 64 128

AP(dead) 0.699 0.693 0.673 0.650 0.674 0.700

AP(alive) 0.870 0.864 0.843 0.837 0.860 0.869

mAP@0.20 0.785 0.778 0.758 0.744 0.767 0.784

Detection Speed (fps) 19 24 20 11 17 17

YOLOv3

-tiny

YOLOv4

-tiny

32 64 128 32 64 128

AP(dead) 0.690 0.676 0.727 0.696 0.701 0.734

AP(alive) 0.859 0.846 0.883 0.871 0.868 0.888

mAP@0.20 0.775 0.761 0.804 0.783 0.785 0.811

Detection Speed (fps) 85 89 91 49 66 85

Table 2.3: Test accuracy and detection speed of YOLO models trained on different

batch sizes
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.14: Example classification results from the YOLOv4-tiny network on the

mortality rate estimation test set (Green boxes indicate ground truth, purple boxes

are predictions for the alive class and pink boxes are predictions for the dead class)
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2.2.2 Dynamics of Predation

Population of any creature do not remain constant but changes, sometime dras-

tically, within a period of time. One of the factors of such fluctuations is the dynamic

predator-prey cycles. Predators influence the numbers of their prey and vice versa.

The interaction between the two forms creates a cyclical pattern and urges changes in

populations over time. For this reason, we added 2 more categories of relevant crea-

tures to sea scallops: monkfish and sea star. Sea stars are the primary predator of sea

scallops (Figure 2.10i) and monkfish are opportunistic feeders that prey whatever is

most available at the time. Monkfish usually swim close to the seafloor with an unified

appearance to the surface of seabed (as shown in Figure 2.10j) which is a substantial

challenge to our detection network.

Dataset and Data Augmentation

For the class of Monkfish, there were only 74 images annotated from M59, M60,

M62, M63, M66, M68, M70 and M71 resulting in 97 monkfish annotations. Due to the

limited number of images in this class, data augmentation was required to reduce the

negative effect of class imbalance. We first expanded the original dataset by flipping

the images horizontally and vertically generating a dataset that consists of 296 images

and 388 annotations. We then trained a YOLOv5 [58]-based neural network on this

lightly enhanced dataset for a 1-class detection task recognizing monkfish only. The

images were split 80/20 for training/validation (236 images for training, 60 images

for validation). We trained the monkfish detector for 100 epochs and the validation

accuracy peaked at the 67th epoch achieving mAP@.5 and mAP@[.5:.95] of 0.995 and

0.861, respectively. Training curves are shown in Figure 2.15a. Next we run the trained

monkfish detector on our original scallop dataset (i.e. 97,344 images from 67 missions)

in order to discovery as much monkfish as possible from un-annotated images. 86 more

images with 90 more monkfish objects ( Figure 2.15b - Figure 2.15d) were found by

using a IoU threshold of 0.5 to filter out most of the false positives .

Given the fact that the data size of the Monkfish class was yet relative small
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(a)

(b) (c) (d)

Figure 2.15: (a): Monkfish detection training curves; (b)-(d): Example detection re-
sults with IoU threshold = 0.5.

compared to the other two classes, we further augmented the dataset to increase its

size and diversity. Techniques we adopted include ColorJitter that randomly adjust

the brightness, saturation, and contrast of the images (Figure 2.16d - Figure 2.16f);

Adding Gaussian, Speckle, and Salt-and-Pepper noises Figure 2.16g - Figure 2.16i);

Applying Mean, Gaussian, and Median filters to the images (Figure 2.16j - Figure

2.16l). Eventually 5,760 more Monkfish images were generated after augmentation.

Our final dataset for the 3-class classification task consists of 11,013 images containing

29,206 annotated objects (7,676 stars, 15,023 scallops, 6,507 monkfishes). Noted that

we only considered alive/healthy scallops for this problem.
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(a) Original (b) Horizontal-flip (c) Vertical-flip

(d) Brightness-jitter (e) Saturation-jitter (f) Contrast-jitter

(g) Gaussian noise (h) Speckle noise (i) Salt-and-pepper noise

(j) Mean filtering (k) Gaussian filtering (l) Median filtering

Figure 2.16: Example of augmented Monkfish images
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Training Procedure

We first experimented with a various of training configurations and weights for

the training architectures discussed in Section 2.2.1. The combination that fits the

best for our data is YOLOv4 with pre-trained weights on COCO [70], learning rate of

0.0001, batch size of 64, and ignore threshold of 0.7. Input images were resized to 832

x 832. We trained the network for 20,000 iterations and the images were split 80/20

for training/testing: 8,811 images in the training set, and 2,204 images in the test set.

Training loss and validation accuracy curves are plotted in Figure 2.17.

Figure 2.17: Training loss and validation accuracy for YOLOv4 on 3-class classification
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Results

The YOLOv4 classification network exhibits a mAP of 0.937 with IoU threshold

of 0.2. Precision and recall are both 0.89. Corresponding APs are 0.882, 0.969 and

.960 for Monkfish, Scallop and Star classes respectively. Total detection time is 97

seconds equivalent to 22 fps. The results shows that the classification network is quite

competitive. Figure 2.19 displays example test results where green boxes indicate

the groundtruth annotations; Pink, yellow and blue boxes illustrate the predictions for

Scallop, Star and Monkfish. Figure 2.19a - 2.19d demonstrate that the classifier was

able to detect and localize monkfishes even under extreme lighting conditions. And the

network was capable of learning features of objects in various sizes simultaneously from

low-contrast and low-brightness images. Noted that Skate fish presents high similarity

with Monkfish (shown in Figure 2.18) which was confounded during both annotating

and detecting processes. It would be interesting to address this problem in the future

with improvements for the network architecture on detecting objects with analogous

appearances.

(a) Skate (b) Monkfish

Figure 2.18: Example to show the similarity between Monkfish and Skate.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.19: Example classification results from the YOLOv4 network on the Predation

test set (Green boxes indicate ground truth, pink boxes are predictions for the Scallop

class; yellow boxes are predictions for the Star class; and blue boxes are predictions

for the Monkfish class)

82



Chapter 3

IMAGE REGISTRATION FOR LONGITUDINAL DETECTION

3.1 Optical Flow

In this section we focused on motion-based segmentation to identify landmarks

and separate moving objects from the background. Moving animals are considered

as objects of interest for detection, tracking or monitoring animal behaviors. The

dormant objects, such as prominent rocks that are distinctive can be contemplated as

landmarks to relate data derived from disparate sources. Optical flow often serves as

a good representation for motion of individual pixels on the image plane. It is a way

to calculate the motion of image intensities over time, of which high intensity indicates

regions of significant change. The flow fields that are associated with moving objects

can then be analyzed to segment objects of interest.

We choose the models of LiteFlowNet [53] pretrained on KITTI [41] and Sintel

benchmarks as our motion detectors. Each image pair generated from our previous

registration model (Section 3.2) is cropped and rescaled to the same size (First and

second columns from the left in Figure 3.1) to be fed into the flow estimation network.

Examples of the flow field predictions are shown in Figure 3.1. The KITTI [41] dataset

contains frames of real world scenes of traffic and roadways captured by cameras and

3D laser scanner. The Sintel [15] are generated from animated sources of artificial

scenes. Third and forth columns of Figure 3.1 are the results generated by the models

pretrained on KITTI [41] and Sintel [15] respectively where we can see that both

networks are able to detect motionless large objects or cluster of small objects. The

Sintel-model produces clearer boundaries around objects, for example, the fish on the

top-left corner in Figure 3.1a and the small whitish scallop on the bottom in Figure 3.1c.
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(a)

(b)

(c)

Figure 3.1: Examples of flow fields computed by LiteFlowNet [53] models pretrained
on KITTI [41](3rd column) and Sintel [15](4th column)

This could be due to that the KITTI [41] dataset contains limited motion types and

does not have distant objects captures. In addition, the Sintel [15] dataset has 10x more

data frames and double the groundtruth density per frame than KITTI [41]. Even so,

both networks have difficulties with illumination changes from the AUV spotlight that

neither is capable of distinguishing flat seafloor as background and recognizing small

moving objects.

3.2 Image Registration

Image registration is convenient in many computer vision applications for image

mosaicing, target localization, motion tracking and environmental monitoring. It aims

to transform different set of data from various circumstances into a particular reference

coordinate system in order to obtain the integrated information from divergent sources

[89]. Basic steps involved in image registration include feature detection that is to find

the common features shared between the images, feature matching that decrypts and

measures the similarities among the features besides spatial relationships, as well as
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transformations of points mapping from one image to the referred image.

Since it was hard to find corresponding matching points based on optical flow

from image pairs with low contrast, we then adopted deep learning based image reg-

istration techniques to transform the pairs of images into one coordinate system. Su-

perGlue [116] was proposed with an attention-based context aggregation mechanism

to learn geometric transformation and jointly correspondences as well as rejecting non-

matchable points using an Graph Neural Network (GNN) combined with an Optimal

Matching layer. It performs context aggregation, matching, and filtering in a single

end-to-end fashion. The architecture of SuperGlue [116] was trained on both ScanNet

[24] dataset of indoor scenes as well as MegaDepth [69] dataset developing an outdoor

model (Figure 3.2).

(a) Indoor (b) Outdoor

Figure 3.2: SuperGlue keypoints matching example of two environments [116].

In order to evaluate the performance of SuperGlue [116] architecture on our

dataset with challenging attributes, we first selected a set of consecutive frames with

interesting objects, such as discriminative objects (large or cluster of rocks shown

in Figure 3.3a and 3.3d, Figure 3.3b and 3.3e) or moving animals (floating fishes in

Figure 3.3a and 3.3d, a swimming scallop appears on a flat seabed in Figure 3.3c and
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3.3f). We specifically chose the SuperGlue [116] network settings for outdoor estimation

as it was designed to better deal with illumination changes and occlusion. Given a pair

of images the model extracts matching features across the image pair in 7.5 sec on

average (0.1 fps running speed). The matching threshold was set to 0.5 for keypoints

selection in order to identify positive correspondences between the images pairs.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: First two rows: examples of image pairs with distinctive objects; Third

row: homographies computed from SuperGlue [116]

Figure 3.4 gives the example correspondences output from SuperGlue [116]

where the matches are colored by their predicted confidence in a jet colormap (i.e.
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the red line means higher confidence and the blue line indicates less confident). We

generated homographies of the image pairs by registering each image pair to be in

the same coordinate systems to further validate the accuracy of matching feature key-

points extracted from the model. The homography should be perfectly aligned with

meticulous feature matching. Example results can be found in Figure 3.3g - 3.3i, we

show the homographic images computed from the image pairs in the first two rows in

Figure 3.3. The homographic image contains the overlap area only and projects the

second image in the same coordinate frame of the first image. Based on the point

correspondences results, we can tell that SuperGlue [116] generalized well on images

with low contrast and unconventional illumination changes. Small register deviation

happened commonly among the areas that had apparent motion variations. Reasons

that account for such changes in the images are: 1). Independent movement of animals;

2). Parallax due to objects that are not co-planar with the rest of the features; 3).

Radio distortions; 4). Possible registration miscalculations.

After observing the promising results from SuperGlue [116] on our selected test

image sequences, we continued running the registration network on the entire datasets

of images from other missions for our later image mosaicing tasks (see Section 3.3).
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(a) (b)

(c)

(d) (e)

(f)

Figure 3.4: Example outputs from SuperGlue [116] showing feature point matches of

image pairs
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3.3 Image mosaicing

Since SuperGlue [116] has shown its capability of finding matching points be-

tween adjacent images with distinct features we further run the registration network

on large datasets to evaluate its robustness. Campaigns and missions we evaluated

SuperGlue [116] on:

• 20170817 IM: 17 legs containing 7,791 images.

• 20170824 VIMS: 25 legs containing 103,528 images.

• M107: Leg 20170825235249 containing 1,450 images.

As discussed previously,the AUV followed a preset ”lawn-mowing” pattern dur-

ing each mission in order to photographically cover the study areas and images were

captured at 3.75 Hz with the AUV traveling at a certain speed which resulted in an

overlap between consecutive images in a line. In our previous experiments, we skipped

some in-between images and only picked every fourth image in the datasets however

there were overlaps that still exist between successive images. The same scallops were

double counted if they appeared in overlapping areas of successive images which led

to an inaccurate population estimation. Hence we intended to integrate multiple over-

lapped images in order to acquire more accurate scallop counts over the sequences as

well as removing the distortions between images caused by the movement of the AUV.
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)
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(i) (j)

(k) (l)

Figure 3.5: Example image mosaics from mission 20170817 IM
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From the keypoints and matches generated after registration, we iterated through

all neighbouring images of the current image in order to find the sequences of successive

images that contain sufficient overlapping areas. Based on the UTM ((Universal Trans-

verse Mercator) coordinates we were able to align multiple scenes to a single unified

frame. Figure 3.5 gives example mosaic images generated from mission 20170817 IM.

Even though mission 20170817 IM is an area of low scallop density with sparse gravel

and rocks laying on the seabed , SuperGlue [116] was still able to find sufficient match-

ing keypoints (e.g. Figure 3.5a, 3.5c). As the center of images are typically clearer

than the corners due to lighting configuration of the AUV, the mosaics are beneficial

on improving the illumination condition around the corners of the images where the

objects may be too dark to detect. Generating the mosaics also allows us to obtain a

wider view of objects that are too large for a single image (Figure 3.5b, 3.5k, 3.5g)

which can be used as landmarks for correlation with data from other sources.

(a) (b) (c)

Figure 3.6: Example images of high scallop density areas from mission M107
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In order to evaluate our hypothesis on correcting scallop counts, we performed

image mosaicing on images from one leg (i.e. 20170825235249) of mission M107

which is an area of sandy substrate with high scallop density (Example images of these

areas are shown in Figure 3.6). We only considered healthy scallops for this experiment

and run the 2-class classifier trained with ignored threshold of 0.5 from Section 2.2.1

on a total of 1,449 images. There were in a total of 23,364 healthy scallop detections

collected on individual image frames. Noted that the detection results shown are

different from our previous one-class detectors in Chapter 2 since we excluded the

compromised detections classified by the network. For the detections in the overlapped

areas between consecutive image, we used a IoU threshold of 0.2 to determine whether

the two detection boxes imply the same scallop. As illustrated in Figure 3.7 we

draw the detection bounding boxes on each individual image with the same color of

the image outline and use red boxes to indicate duplicate detections. It is obvious to

notice that nearly every scallop detection within the overlap areas are counted multiple

times implying an over-calculated scallop counts. By removing the duplicates, there

are 14,522 healthy scallop detections in 20170825235249 of mission M107.

Num. of Original

detections

Num. of Corrected

detections

Double-counted

percentage

20170817 IM 1,219 702 42%

20170824 VIMS 50,363 21,032 58%

M107-20170825235249 23,364 14,522 38%

Table 3.1: Number of detections and the corresponding double-counted rates for the 3

separate datasets.
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We continued performing the same approach on images from 20170817 IM and

20170824 VIMS. 20170817 IM is dominated by gravelly and rocky sediments with

less amount of scallops. 1,219 scallop detections were collected by the classifier from

which 517 overlapped boxes were removed resulting in 702 corrected detections. For

20170824 VIMS, the areas are heavily sand-covered with high scallop density. After

correction, the total number of detections was reduced from 50,363 to 21,032. Results

are summarized in Table 3.1 from which we show the double-counted percentage for the

3 datasets and we can see that nearly half of the detections generated from individual

images were double counted resulting in a over-calculated assessment.

Given the results from this experiment, we believe that besides the importance

of detection accuracy on individual images, it is crucial to avoid double-counting the

same scallop by the adoption of robust registration and proper alignment of consecutive

images for the purpose of achieving the most accurate scallop population estimation.
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(a) (b)

(c) (d)

96



(e) (f)

(g) (h)
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(i) (j)

(k) (l)

Figure 3.7: Example image mosaics with scallop detection bounding boxes from M107-

20170825235249 ; Detection bounding boxes are color-coded by which image they

belong to; Red boxes indicate the double-counted detections in overlapping areas.
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3.4 Classification on NEXRAD Data sequence

In this section we discuss a project of multi-class classification conducted for bio-

logical applications on data collected from next-generation weather surveillance radars

(NEXRAD) (shown in Figure 3.8) during 1996-2017. The NEXRAD system is com-

posed of 160 radar sites throughout the United States for monitoring atmospheric and

biological movements [91]. A standard NEXRAD radar that has a diameter of 9.1

m and an aperture diameter of 8.5 m operates in three-dimensional at a frequency of

2800 MHz [144]. There are currently two types of data collected from the NEXRAD.

The base Level-II data contains three meteorological quantities and the Level-III data

is an upgrade from Level-II with vertical polarization added to distinguish additional

meteorological conditions and movements.

Figure 3.8: Example image of the next-generation weather surveillance radars

(NEXRAD)
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In Section 3.4.1 we explain the data format and the preprocessing steps required

to analysis the dataset; Section 3.4.2 comprises the experiments we conducted and the

corresponding results;

3.4.1 The NEXRAD Dataset

The Level II NEXRAD radar data consists of 3 products of Radial Velocity,

Reflectivity, Spectrum Width from 1995-2012 (Legacy) and 6 products of Correlation

Coefficient, Differential Phase, Differential Reflectivity, Radial Velocity, Reflectivity,

Spectrum Width from 2012-present (Dual-pol). There are 44 radar cites collected a

total of 36,196 data instances in spring and autumn. Each data instance contains a

number of radar format files recorded during a certain period of time at night.

There are four major classes: Bird-dominated Movement (B), Insect-dominated

Movement (I), Contamination (C) and No-bird (NB). The contamination class can be

further divided into four types: Precipitation (P), Trans-gulf movement (T), Anoma-

lous Propagation (AP), and Clutter (CL). Light precipitation are shown in green on

the radar display with yellow, red and magenta indicating the increased amount of pre-

cipitation. The trans-gulf movement occurs during biological migration near coastal

areas where the targets (e.g., birds) are present over water and gradually move inland.

Anomalous propagation is often characterized by echoes at far distances from the radar

and spreading over time far outward from the normal range of the radar. The clutter

type usually indicates smoke, sea breezes or other radar echoes with no distinct type

of structure.

We used PyArt [47], an open source Python library to visualize and convert

the raw radar data into color-mapped image sequences using the reflectivity feature.

Each image was cropped and scaled from the center to a 224×224 sub-image and then

used as input to the networks. Example image sequences of classes Bird-dominated

Movement, Insect-dominated Movement and Contamination are shown in Figure 3.9.

The first column and fourth column are the first and last frame from the sequence.

And we pick two frames in between to illustrate the transformation. We also noticed
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that the number of frames varies from each data instance and Figure 3.10 illustrates

the distribution of the number of frames across the entire dataset.

(a)

(b)

(c)

Figure 3.9: Example Image sequences of the three classes from KAMX radar site in

Spring. (a) Bird ; (b) Insect ; (c) Contamination.
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Figure 3.10: A distribution of the number of frames in each sequence across the entire

dataset.

3.4.2 Experiments and Results

For our experiments we only considered Bird-dominated Movement, Insect-

dominated Movement, Contamination as a 3-class problem. We split the dataset 80/20

for train/test. There were 29,305 sequences of which 656,465 frames in the training

set: 4,992 sequences (98,307 frames) of Bird ; 2,769 sequence (53,851) of Insect ; 21,544

sequence (504,307 frames) of Contamination. To deal with the class imbalance issue,

we also created a balanced dataset that had around 2,600 number of sequences in each

class and every sequence was augmented to over 40 frames. This balanced dataset was

spit 80/20 for train/test as well. There were 7,315 sequences of 309,862 frames in total

in the training set and 1,855 sequences of 78,517 frames in the test set.

CNN for single frame classification

We first used a CNN to classify single frame at a time. The architecture we
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adopted was a pre-trained Inception-V3 network from Tensorflow Hub [4]. Addition-

ally we deployed a voting mechanism that aggregate the predictions of each frame

within a sequence and assign a final predicted class to this sequence by majority votes.

The network trained on our original training set for 25K steps.

We stopped the training process at both 10K steps and 25 steps to run a val-

idation on the test set. As illustrate in Figure 3.11 (a), the training accuracy (0.470)

did not improve from 20K to 25K steps. And the test accuracy peaks at 20K steps of

0.653 and 0.686 after voting. We also trained the Inception network on the balanced

dataset for comparison with the other methods described below.

LRCN

In this experiments we built a CNN into a RNN, as known as the long-term

recurrent convolutional network (LRCN), in consideration of the temporal features of

the data. We used a smaller VGG-style [125] network that consists of 10 convolutional

layers with batch normalization and ReLU activation and 5 max-pooling layers for the

CNN part of the model. And then followed by a LSTM network. This model was

trained from scratch for 10k epochs on the balanced dataset.

Extracted Feature from CNN

In the following two experiments we explored if the feature extracted from a

CNN would benefit the classification results of other networks. We first had every

frame from the balanced dataset run through the Inception network and saved the

outputs from the last pooling layer. The features extracted are 2048-d vectors that

can be used as input for other networks. The extracted features were then fed into a

separate RNN: a 2048-wide LSTM network with dropout and ReLU activation. The

second experiment was to flatten the feature and then fed into a 5-layer MLP that has

dropout and ReLU activation in between as well. Both of this network were trained

for 10k epochs.

103



(a)

(b)

Figure 3.11: (a): Training accuracy of Inception-v3 on the original training set for 10K
(orange), 20K (blue) and 25K (Red) steps; (b) Training accuracy of LRCN, LSTM,
MLP models for 1K epochs.
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Results

The training accuracy of LRCN, LSTM, MLP is shown in Figure 3.11 (b). We

only plot results of the first 1k epochs since all the model has already converged within

this period. The LRCN method reached 0.416 accuracy during testing. We noticed

that the validation accuracy dropped since the 50th epoch while the training accuracy

kept increasing that may indicate overfitting. The LSTM network has a test accuracy

of 0.482 and the MLP model achieves 0.456 test accuracy which shows that features

extracted by a CNN would be of helpful in processing temporal data. Our baseline

approach of using Inception network reached 0.433 test accuracy and 0.443 after voting

mechanism.

Generally our approaches did not perform well on this dataset. One may be due

to the high similarity between samples in different the categories. And we only used

reflectivity to convert the radar data to images. As there are other products such as

correlation,velocity, spectrum that can be used as channel to generate high-dimensional

imagery. And we also expect to adopt a more sophisticated 3D network that can utilize

the spatial and temporal feature of the data.
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Chapter 4

MULTI-SENSOR TERRAIN ANALYSIS

4.1 Image-based Terrain Analysis

In this section we investigate the terrain type distribution of the seabed in

the areas of the BACI studies. Section 4.1.1 disuses the multi-class classifiers we

built to distinguish various forms of sediments. In Section 4.1.2 we correlated scallop

quantity with terrain types to demonstrate the habitat preference of sea scallops for

our population estimation study.

4.1.1 Terrain Classification

From our prior knowledge and observations, images collected from different

missions show diverse textures or appearances of the seabed and scallops or other

relevant creatures are very likely to aggregate on certain types of benthic substrates.

Figure 4.1 shows examples of seabed sentiment as well as terrain categories, such

as gravelly areas with large amounts of debris, rocks and shell hashes (Figure 4.1c),

feature-less (Figure 4.1b) or rippled (Figure 4.1d) sandy substrate. Mounds of sand

dollars (Figure 4.1d) usually appear in both gravelly and sandy areas. To further

improve our marine species population study, we developed a whole-image terrain

classifier such that the priori contextual information of the seafloor would be beneficial

to the AUVs for path planning, target detection, and other perceptual tasks in real-

world environments.
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(a) Gravel

(b) Sandy

(c) Rocky

(d) Ripple

(e) Mounds

Figure 4.1: Example of different terrain categories
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The dataset we used for this implementation consists of images of the seabed

that are annotated with terrain labels according to their benthic texture. There are

six categories and five of them are different terrain types: Gravel (Figure 4.1a), Sandy

(Figure 4.1b), Rocky (Figure 4.1c), Ripples (Figure 4.1d) and Mounds (Figure 4.1e).

Images that do not belong to either of the terrain types (e.g. blurry images or images

taken in poor reflection) are categorized into the Null class (Figure 4.2). The dataset

is formed from 241,951 images, a mixture of raw images and Retinex-enhanced images,

and 26,481 (Gravel), 93 (Mounds), 27,766 (Null), 1,360 (Ripples), 435 (Rocky), 185,816

(Sandy) images in each class respectively. Note that not all images in the entire dredg-

ing dataset were annotated with terrain labels. We select 4 campaigns (20150711 IM,

20170817 IM, 20170822 VIMS, 20170824 VIMS) where a large ration of images

have terrain annotations to demonstrate numerical proportions of each terrain type in

Figure 4.3. From where we learn that Sandy is the dominant class among all terrain

types and Gravel is the second largest class in the newest 2017 AUV campaigns. For

earlier campaigns, a numerous number of images were labeled as Null which could be

due to the camera we used for earlier missions was inclined to capture low quality

images.

Figure 4.2: Example images in Null class

We conducted three multi-class image classification experiments and a addi-

tional binary classification task. We trained Inception-V3 [4] classifiers using the same

train/test split ratio (80/20) for all the experiments.
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(a) (b)

(c) (d)

Figure 4.3: Pie chars of terrain type distributions by campaign

In the first experiment, we trained the classifier on subset of images collected in

2017 which was the latest annotated data. This subset contains approximately 20% of

images of the entire terrain-labeled dataset. The training set had 38,668 images with

9,848(Gravel), 27 (Mounds), 714 (Null), 378 (Ripples), 303 (Rocky), 27398 (Sandy)

images in each class respectively. The test set had 12,890 images. We trained the

network (denoted as 2017-subset in Table 4.1 ) for 10,000 steps. It achieves an

average precision of 0.357, an average recall of 0.794 and overall test accuracy of 0.696.

Precision and recall values for each class achieved are presented in the first two columns

in Table 4.1.

In the second experiment, we trained the classifier on the entire terrain-labeled

dataset and used 20% of the training data for validation. The validation accuracy
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peaked at 20,000 steps and the model exhibits the test accuracy of 0.667 with an

average precision of 0.325, an average recall of 0.682. Precision and recall values for

each class achieved are presented in the third and forth columns in Table 4.1.

Since the Null class was made up of disordered images which could be confusing

to the classifier leading to a number of false positives, for the third experiment we

excluded the Null class and trained a 5-class classifier for 20,000 steps. The test

accuracy of this network increased to 0.741 as predicted. The last two columns in

Table 4.1 give the individual precision and recall values of every class.

2017-subset All-image 5-class

Precision Recall Precision Recall Precision Recall

Sandy 0.929 0.645 0.952 0.673 0.957 0.748

Rocky 0.142 0.821 0.081 0.908 0.085 0.897

Ripples 0.136 0.889 0.085 0.868 0.087 0.912

Mounds 0.053 0.75 0.008 0.368 0.009 0.421

Gravel 0.608 0.787 0.453 0.462 0.399 0.684

Null 0.271 0.874 0.373 0.813 - -

Average 0.357 0.794 0.325 0.682 0.307 0.732

Table 4.1: Precision and recall values from the terrain multi-class classifiers.

After reviewing the prediction results, we conclude three reasons for misclassifi-

cation: 1). Images possess features of more than one category: For example Figure 4.4a
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shows a sandy sediment with ripple patterns, Figure 4.4b has mounds of sand dollars

on half of a sandy image, Similarly, rocky texture appears on one third of Figure 4.4c

and the rest of the image has ripple/sandy appearance; 2). Ambiguity of labeling: we

noticed a inconsistent labeling across the categories and in such case some predictions

are in fact correct but were recognized as false positives/negatives. Sand ripples are

showing in Figure 4.4d and mounds of sand dollars appear all over Figure 4.4e but the

two images are labeled as Gravel. Figure 4.4f is labeled as Sandy but apparently has

the features of Rocky ; 3). Skewed dataset: 77% of images in the data set are labeled as

Sandy which has 7x more images than the second largest category and is 2 to 4 orders

of magnitude more massive than the other categories. Class imbalance is the major

issue that impact the performance of the classifiers.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Examples of misclassified terrain images.
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Under these circumstances our next step was to create a more balanced dataset

by combining classes with high similarities. Class Ripples were merged into Sandy

class as we witnessed that most of the Ripples images indeed had a sandy sediment.

From Figure 4.1a, 4.1c and 4.1e we can see that images in Gravel, Rocky and Mounds

have considerably similar textures among them hence it was intuitive to us to combine

the three classes together. We trained a Sandy-Gravel binary classifier including all

images from the 2017 dataset. There were a total of 50,606 images where 13,571 images

belonged to the Gravel class and 37,035 images were Sandy. Images were split 80/20

for train/test and the classifier were trained for 10,000 steps. The network achieved an

accuracy of 0.897 on the test set with the corresponding average precision of 0.859 and

average recall of 0.914. Precision and recall values for the Sandy class are 0.876 and

0.978, for the Gravel class are 0.738 and 0.952, respectively. From the results we can

tell that by combining the related categories it alleviated the impact of class imbalance

and labeling inconsistency therefore reduced the number of false positives to a great

extend. Comparison of the performance of all the classifiers can be found in Table 4.2.

6-class

2017-subset

6-class

All-image

5-class

All-image

Balanced 2-class

2017-subset

Avg. Precision 0.357 0.325 0.307 0.859

Avg. Recall 0.794 0.682 0.732 0.914

Test Accuracy 0.696 0.667 0.741 0.897

Table 4.2: Average precision,recall and test accuracy of the terrain classifiers.
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4.1.2 Scallop Habitat Study

Establishing scallop-habitat relationship is crucial for scallop population census

as well as protecting the native living environment. Terrain types is one of the most

important characteristics in habitat structures that determines the abundance of sea

scallops. We have observed from past experiments that are likely to aggregate at certain

types of benthic substrate. In order to further investigate the habitat preference of

healthy scallops, we related scallop density with the corresponding terrain types.

We first analyzed scallop density by missions based on the prediction results

generated from our previous one-class detector in Chapter 2. True positive scallop

detections were accumulated for each individual image in the missions on which we run

the YOLO detectors. A visualization system was then developed that illustrates the

quantitative distributions of scallops at different areas from each mission. We looped

over every image with its corresponding scallop counts and arrange them geographically

based on the image metadata. We adopted heatmap-like color-coding structure to

represent different values from 0,1,2,...,9,10+ indicating the number of scallops within

one camera image covered area. Warm colors under the red-yellow spectrum represent

higher value points namely heavier scallop population and cool colors form the blue-

green spectrum mean lower value points indicating sparse distributions. Example 2D

histograms are shown in Figure 4.5. The y-axis indicates mission leg numbers and the

x-axis represents the geographical location across study areas. Each row demonstrates

the AUV trackline from one side to another. The density histograms provide us a more

comprehensive overview of scallop population distributions among each mission as well

as allowing us to segment and filter the data of interesting areas. From the example

plots in Figure 4.5 we can tell that Mission 96, Mission 111 has a more extensive

quantitative distribution of scallops across the AUV travelling areas than the other

missions. Leg0, leg1 in Mission 107 and the bordered regions of legs in Mission 94 all

have a high scallop density.
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(a) Mission 89 (b) Mission 90 (c) Mission 94

(d) Mission 96 (e) Mission 97 (f) Mission 100

(g) Mission 107 (h) Mission 111

Figure 4.5: Example 2D histograms of scallop population distribution by Mission

Additionally we extended our mission visualization system to a web application.

Figure 4.6 presents an example of the user interface for Mission 111. The 2D histograms

were indexed by their mission number which was easy to switch between missions within

one cruise to get a general quantified distribution of scallops of the area. The paths of
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where significant images (i.e. high density) were located could be sought out simply

by clicking on the corresponding squares.

Next we examined the correlation between scallop distribution and the terrain

type. First of all, A quantitative analysis on scallop counts for each terrain type was

conducted. As we mentioned above not all images in our dredging dataset have terrain

labels therefore the images used in this section are only a subset and mainly from later

(i.e. 2017) campaigns. In Figure 4.7a we plot the scallop counts categorically with

the highest (Max), lowest (Min) and median values for each terrain type across the

entire terrain dataset. The highest number scallops per image frame for each category

are represented by the blue bars and the values are 280, 6, 3, 31, 6, 69, corresponding

to Sandy, Ripples, Rocky, Gravel, Mounds substrates and Null category. The median

values represented by the yellow bars for each category in the same order are 2, 1, 2, 2,

1, 3. All images of each terrain type have a least one healthy scallop. Furthermore we

display a more detailed spread of scallop counts over different substrates as well as the

skewness and variance of the data in Figure 4.7b. For each category, the minimum

is shown at the left “whisker” and the maximum is at the far right. The yellow lines

inside every box indicate the median values. Figure 4.7b gives us an overall pattern

visualization for all categories. We can see that class Sandy has the most outliners and

a extremely wider distribution compared to other classes. Null class includes all types

of substrates and the ones with high scallop counts areas can potentially be dominated

with sandy sediment.
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Figure 4.6: Example user interface for mission visualization

From the mission visualization with scallop density, we associated it with terrain

types for 6 separate campaigns (20140711 IM, 20170822 VIMS, 20170823 VIMS,

20170824 VIMS, 20170825 VIMS, 20170826 VIMS) as shown in Figure 4.8. Sim-

ilarly the y-axis of each 2d histogram indicates mission legs of every campaign. The

x-axis represents the AUV trackline with the geographical positions of where the image

frames were captured. The background color of each rectangle inside suggests the cor-

responding terrain type: orange-yellow colors indicate sandy substrate and blue colors

specify gravelly areas; Null class is interpreted in grey color and for those which have

not been designated with any terrain labels we describe in color white. The number

of green dots inside each rectangle illustrates the total number of scallops within this

image where positions of these dots were randomly generated. The grid plots in Fig-

ure 4.8 first reveal the substrate composition and the dominant type of the study
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areas. For example areas campaign 20170823 VIMS mostly consist of sandy bottom

types except the fourth leg showing a gravelly area. And by combining with scallop

counts per image, we can directly recognize high-density vs. intermediate-density vs.

low-density areas. Such that campaign 20170825 VIMS covers the most high-density

areas compared to others and the last leg in 20170824 VIMS contains immensely

dense scallops. For the analysis we show that sea scallops are most abundant on soft

sandy substrate as opposed to coarse rocky areas. And they are likely to aggregate on

light gravelly bottoms that are close to sandy areas.

117



(a)

(b)

Figure 4.7: Scallop counts analysis on different terrain categories.
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(a) 0170822 VIMS (b) 20170823 VIMS

(c) 20170824 VIMS (d) 20170825 VIMS
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(e) 20170826 VIMS (f) 20140711 IM

Figure 4.8

4.2 Patch Classification

Besides the IMU (inertial measurement unit) information and UTM coordinates

that have been collected along with sonar scans and camera images, we need to recover

distinguishable objects from the images as well in order to precisely correlate data

produced from both types of sensors. Rocks and boulders are substantial objects that

are adequate to be considered as the most eligible landmark objects. Therefore our

main task of this section is to gather all images that incorporate in which there are

dominant rocks. In Section 4.1.1, we discussed that 435 images are labeled as Rocky

which means that each of these images has at least one large rock or chunks of small

rocks and sea shells. However based on our observation and the labeling inconsistency

issue discussed in Section 4.1.1, as well as the fact that a large percentage of images in

our dredging dataset have not yet been annotated with terrain labels, there are sure of

more rocky images than the number of known. Going over the entire dataset of 1M+
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images to hand-pick the missed rocky images is extremely expensive and tedious. For

this reason we built patch classifiers to filter out the non-rocky images.

Figure 4.9: Annotation clicks and examples of corresponding patches

We conducted three major experiments on rock patch classification. In the

first experiment, we started with annotating patches on the rocky images only. The

annotation process was performed as follows: we randomly clicked on rock objects

and the seabed. The clicks were interpreted as the center of patches from where we

relaxed a couple of pixels to generate 50 x 50 square patches. From 435 rocky images,

we generated 90 patches per image on average resulting in a total of 38,920 patches in

which 13,514 are rocky and 25,406 are non-rocky. Figure 4.9 gives an example of patch

annotations on a rocky image. Yellow dots and the patches on the right side denote the

rocky class and blue dots stand for non-rocky patches. We trained the Inception-V3
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[4] classification network on this dataset for 10,000 steps with train/test split ratio of

80/20. The test accuracy achieved 0.894 with corresponding precision of 0.793 and

recall of 0.823. The confusion matrix can be found in Table 4.3-(a).

Predicted

Actual

Rock Seabed

Rock 1989 438

Seabed 522 4096

Accuracy 0.864

(a)

Predicted

Actual

Rock Seabed

Rock 2529 503

Seabed 1136 6888

Accuracy 0.855

(b)

Table 4.3: Confusion matrix

For the second experiment we added images that presents other types of sub-

strate rather than gravelly only in order to add diversity in the features (Figure 4.10c).

The dataset (denoted as combined) for reference) consisted of 825 images and a total

of 62,034 patches generated though the same annotation procedure described in the

first experiment. 16,807 rocky patches and 45,277 non-rocky patches were split 80/20

for train/test. The training process was done in 25,000 steps. We evaluated the per-

formance of the classifier on the test set that contained 3,032 rocky patches and 8,024

non-rocky patches. The confusion matrix is summarized in Table 4.3-(b). Precision

and recall arrived at 0.690 and 0.834, respectively. Test accuracy reached 0.855.

Figure 4.10 shows example test results from our patch classifier. We present

image pairs of predictions with their corresponding groundtruth images for a clearer

visualization to evaluate the classification performance of the model. Green and blue

boxes indicate the correct patch prediction for rocky and non-rocky respectively. Red
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boxes pointed out the misclassified samples. We can see that the classifier is proficient in

segmenting rocks from the seafloor background. It is even capable of recognizing small

rocks or gravels laying on the seabed (The third image in Figure 4.10a). We notice

that some false negatives often appear near the edges of the rocks where the borders

are fairly blend in with the background making it harder to be detected. Furthermore

as shown in the examples in Figure 4.10, the images are typically brighter in the

center and darker around the corners due to the searching flashlight installed on the

AUV. Therefore patches located at the corners are more likely to be misclassified. We

combined the grey scale intensities of all images from the test set and extracted the max,

median and min values, as shown in Figure 4.11, for the purpose of demonstrating the

illumination distribution. For this reason, we proposed to investigate the test accuracy

on locations in the image. As the lighting pattern is constant across the dataset, we

iterated all patches in the test set and summarized the predictions on a 1280 x 960

blank (Figure 4.12) image that was the same size as the camera images. Green dots are

the center of correct prediction patches and red dots means the center of misclassified

prediction patches. There are a total of 11,056 predictions of which 9417 are correct

(green) and 1639 are misclassified (red). We divided the summary image into 8 x 6 grid

and calculated the accuracy (showing in the center) of each grid. From where we can

see that the accuracy is generally higher in center grids but drops typically when comes

to the corner grids. This summary image further confirms that the lighting variation

plays an important role in affecting the performance on patch classification.
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(a)

(b)
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(c)

Figure 4.10: Example predictions from the patch classifier with corresponding

groundtruth images.
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(a) Max

(b) Median
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(c) Min

Figure 4.11: Summary of max, median and min grey intensity values from images in

combined test set.
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Figure 4.12: Patch classifier: summary of predictions by location and accuracy per

grid.

In the third experiment we evaluated our patch classifier on a larger dataset

where there was not any terrain label associated with the images. Instead of manually

annotating groundtruth we randomly generated 100 patches evenly across the images

in the dataset. Meanwhile we introduced a voting mechanism that given a threshold,

if the rocky percentage among all patch predictions is greater than the threshold, it

implies that there is a large rock or gravelly areas presenting in the image. We can

also adjust the threshold based on the kind of images we are looking for to conduct

different research studies. The dataset consisted of 152,624 images. We trained the

classifier for 55,000 steps (i.e. until the validation loss stopped decreasing).Figure 4.13

shows example predictions. We also explored the distribution of image counts by rocky

patch percentages, see Figure 4.14.
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Example patch predictions

Figure 4.14: Histogram of image distribution by rocky patch percentage
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4.3 Side-scan Sonar

Side-scan sonars are commonly used on boats or AUVs by marine corps and

oceanographic researchers for detection in deep water. Sonar uses acoustic waves to

detect object in the environment by emitting and receiving reflected sound echo. It

out-stands camera-captured data in some respects such that it is capable of capturing

a wider range of the environment and sound waves tend to attenuate slower in water.

Challenges of interpreting sonar data is that it normally has low-resolution with noise

and uneven reflections.

Figure 4.15a shows a schematic diagram of a sonar-mounted AUV scanning an

object above the seabed. While in operation, the side scan sonar emits fan-shaped

beam of high-frequency acoustic pulse to the seabed at both ends along the tracks. A

transverse view of the side-scan sonar system is demonstrated in Figure 4.15b. The

side-scan sonar used in our research covers a range of 10 meters on each side and has

a frequency of 900kHz. The intensity of the acoustic reflections is recorded in a series

of cross-track slices and by attaching the slices together along the direction of motion

we can generate an imagery of the seabed within the swath of the beam (Figure 4.16).

The black region showing in the center of the imagery represents the nadir gap directly

under the path of the vehicle.

The sonar dataset is made up of 774 data recordings collected in August, 2017.

We generated sonar waterfall images on each side separately using a Matlab tool re-

sulting in 14,880 images.

130



(a) (b)

Figure 4.15: (a) Schematic diagram of AUV sonar scanning an object; (b) Transverse

view of a side-scan sonar system [65].

(a) (b)

Figure 4.16: Examples of seabed scanned by side-scan sonar
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4.3.1 Object Recognition on Sonar Imagery

As our sonar data has converted and stored in common image data format,

it is intuitive for us to develop a detector for object recognition directly on sonar

imagery. Identifying large and distinguishable objects on sonar imagery is also one of

the necessary steps to find corresponding optical images.

Traditional object recognition methods on sonar images [88, 54, 35] use Tem-

plate Matching (TM) to measure similarities on the features of shallow and highlight

shapes of objects [97]. However TM methods always require to generate templates

at first that define the appearance of objects of interest and then find small parts of

images that match with the template. [88] proposes to create target signatures from

a acoustic model and generate templates using a ray-tracing method. A generalized

cross-correlation based function is then used to match regions of an object image to

a template. These TM-based methods take strong assumptions about the input im-

ages to perform the matching procedure and typically have trouble in generalizing over

small objects which in fact are very common to be found on the seabed.

The idea of adopting convolutional neural networks (CNNs) is beneficial in

solving tasks that involve optical images and high-dimensional patterns have been

proved in the past [67, 63, 106], however there is not extensive research work has

been done on CNN-based object recognition for raw sonar imagery. Recent works

[135, 154, 146, 145, 90] have explored in this area and proven the potential advantages

of using CNNs on sonar imagery for underwater target classification. [90] introduces a

sonar image processing pipeline that consists of a data augmenter, feature extractors

and filters, followed by a CNN with a target extractor. Input images are cropped before

going through data augmentation. Features are extracted separately and then fed into a

CNN for a binary classification of whether an image contains an object of interest or not.

If there exists an object a target extractor is followed to give the location of the object.

[154] shows that using deep learning techniques for feature extraction on sonar images

can boost the accuracy of the classifier. Images are first preprocessed and segmented

132



by target objects using different matched filters. Features are extracted with a pre-

trained AlexNet [63] and passed to a linear SVM classifier. Their approach outperforms

other traditional methods in feature extraction. However common problems of these

works are that their datasets are relatively small containing limited number of objects

of interest and they only adopted shallow CNN architectures for the detection task.

[146, 145] use deeper CNNs of 10 layers for binary classification problems and achieve

substantial performance whereas their data are collected by synthetic aperture sonar

(SAS) which result in images of higher resolution than the side-scan sonar images in

our dataset.

We proposed to use a sophisticated CNN architecture, RetinaNet [46], to train

a rock detector. 1,155 of the sonar waterfall images contained at least one rock or

boulder, of which there were 2,372 total. All images were converted to grayscale and

annotated manually with groundtruth bounding boxes (As the green boxes shown in

Figure 4.17). We added 1,000 background images as hard negative examples. The

images were split 80/20 for training/testing: 1,725 images with 2,664 objects in the

training set and 430 images with 693 objects in the test set. We trained the network

with pretrained weights on ImageNet[115] for 50 epochs and 10,000 steps per epoch.

Examples of detection results on the test set can be found in Figure 4.17. The green

boxes are the groundtruth annotations and the red boxes indicate predictions from

the network. Each prediction box has a confidence score written on top to specify the

probability that the box contains an object. IoU threshold was set to 0.5 to filter out

false positives on the test set. The network reaches a test accuracy of 0.713, with a

precision of 0.86 and recall of 0.43

Based on the test results we can see that the network performed well on detecting

rocks of different sizes and shapes from low-contrast low-resolution sonar waterfall

images. We also notice that some of the false positives could be caused by inaccurate

annotations. For example the object on the rightmost in Figure 4.17a and the two

objects near the bottom of Figure 4.17c were all detected by the network with quite

high confidence scores but overlooked as groundtruth during the annotation process.
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Another case is that it is tricky sometimes for human eyes to tell rocks from bumps or

mounds of the seabed, such as the green box on the right-top in Figure 4.17b indicating

a false negative. Shatters showing in Figure 4.17c were not annotated individually

at this time due to their marginal sizes therefore it was hard for the annotators to

distinguish them. However the network appears to be able to find rock pieces from the

shatters (object with confidence score of 0.97 in Figure 4.17c). These errors in the

groundtruth annotations should be carefully addressed with a strict labeling criteria

for a better assessment of the model.
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(a)

(b)

(c)

Figure 4.17: Example detection results of RetinaNet on sonar waterfall images.(Green

boxes: Groundtruth; Red boxes: Predictions.135



4.3.2 Multi-sensor registration

Since the AUV has been collecting data from side-scan sonars and the optical

camera simultaneously during each mission, it provides us an opportunity to utilize

the output from both sensors for multi-modal analysis. Combining data from different

sensors would not only be beneficial for our terrain analysis where sonar scans are able

to bring in additional suggestions on substrate composition, but also can improve our

object detection performance by including the temporal and depth information.

In this section we explain an application we developed that correlates optical

images with sonar waterfall imagery employing the geographical information associ-

ated with the images. We utilized the UTM parameters and time-series data from

the metadata to extract location coordinates correspondences between neighbouring

images. Figure 4.18 illustrates an example of the interface of the application. The

current image is specified by index from user input and opened in a separate window

along with the geographic map. Images overlapping with the current one are drawn

in rectangles at their matching locations. The rest of the images of the current mis-

sion are denoted in green dots making up the AUV trackline. Corresponding sonar

scan displays at background and rotates the same degree as the AUV. It allows us

to navigate to next and previous camera images or sonar scans, jump to images on

adjacent legs using keyboard inputs as well as selecting zoom levels. Examples of the

5 zoom levels are shown in Figure 4.19. The lowest zoom level allows us to examine

the complete mission trajectory and the highest zoom level reveals the detailed seabed

scene. This geographic map application make it more accessible to discover the corre-

spondences between camera images and sonar imagery. In Figure 4.20 we depict the

camera images of the seafloor that match with the selected areas in the sonar scans.
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Figure 4.18: Geographic map that correlates optical images and sonar scans.
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(a) (b)

(c) (d) (e)

Figure 4.19: 5 different zoom levels of the geographic map
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(a)

(b)

Figure 4.20: Example of correspondences between optical images and areas in sonar

scans.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

For this dissertation we focused on developing deep learning based approaches

to automate and optimize the process of biological population assessment. As the tra-

ditional dredging methods for species population monitoring was expensive and time-

consuming, we were motivated to develop CNN-based visual detectors for completing

such measurements of one or multiple species with higher efficiency.

In our Image-based Marine Species Population Monitoring study, we started

with studying the behavior and performance of different CNN-based visual detectors

(including YOLOv2, YOLOv3, RetinaNet) on one-class detection. Results shows that

the YOLOv3 detector achieved the best performance on detecting small objects in low-

contrast and cluttered scenes. We also evaluated the performance of YOLOv3 on a

wide range of scallop density distribution. An auto encoder-decoder neural network was

also developed along with the one-class detection experiments to automatically upgrade

the original rough positions to groundtruth bounding boxes. We also investigated the

influence of batch size on training dynamics in our 2-class mortality rate estimation

experiments. We demonstrated that the optimal batch size varies for different model

structure and has a great impact on the model performance. Analysis on compromised

scallops count can further provide critical statistic information for dredge-included

incidental mortality rate estimation. In our 3-class classification, we aimed at learning

how the predator-prey cycles affect the populations. We successfully balanced the

skewed dataset using data augmentation techniques and achieved competitive results

on this task. Our analysis and results from this chapter would benefit future population

study of marine animals.
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In our Image Registration for Longitudinal Detection study, we first experi-

mented optical flow estimation on motion-based segmentation to identify landmarks

and separate moving objects from the background. However the illumination condi-

tion on the images in our dataset made it exceptionally hard even for state-of-the-art

architectures to catch sufficient movement between image pairs. We then adopted a

deep learning based image registration technique generating accurate keypoint matches

between successive images and based on matches, we were able to stitch multiple over-

lapped images into a single unified coordinate system. We further proved that robust

registration and proper alignment of consecutive images were necessary for calculating

a precise scallop population estimation.

In our Multi-sensor Terrain Analysis study, our terrain classifier demonstrated

the relationship between scallop density and substrate types. Our visualization tools

provided a clear and straightforward way to recognize the quantified distribution of

scallops and the associated terrain types. Our patch classifier was proficient in seg-

menting rocks from the seafloor background and with the voting mechanism we could

easily adjusting the threshold to exclude the images of unwanted terrain types. In-

stead of traditional templates matching method, our deep learning based detector was

able to recognizing objects of various sizes and shapes directly from low-resolution

sonar-waterfall images. Our geographic map application can be used effectively as tool

for visualizing correlations between images and generating correspondences between

optical images and sonar scans.

5.2 Future Work

For our image-based classification project, besides increasing the diversity of

our dataset, we noticed that the network commonly confused Skate with Monkfish.

A multi-stage classifier can be developed where the second stage is for learning the

features of objects with similar appearance. Fine-tuning and modification in the loss

function are also necessary in order to distinguish extremely similar objects. Since we

have proved the importance of robust registration between consecutive images, we can
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further evaluate our technique on the entire dredging dataset to generate the corrected

scallop counts for past missions. Additionally the NEXRAD side project we worked on

can be improved by converting to high-dimensional data so that more features including

spatial and temporal can be captured and fit into a 3D network.

With our multi-sensor registration results, the next step will be improving the

performance of object detection utilizing the correlation between data from different

source. The sonar is able to measure the distance accurately and observe the en-

vironment in a respectively larger scope while optical images give bettor resolution.

Therefore a proper fusion approach should be beneficial to provide detailed environ-

ment description for object detection. One of the common fusion techniques is to add

depth information to tho normal RGB data, producing a 4-channel RGB-D image.

From [92] we learned that we can append two subnets at the top of the detection

network to extract features from RGB image and depth stream, then concatenate the

feature maps at the following fusion layer.

As our ultimate goal is to provide onboard intelligence for the AUV to complete

searching tasks in a full- or semi-automatic manner, our future work should be focusing

on motion planning so the the AUV would be able to autonomously explore areas and

search for target object of interest. Dynamic path planning of unknown environment

is one of the critical problems for robotic navigation systems design. It requires a strict

driving regulation for the AUV to follow the targets of interest and avoid obstacles.

We first propose a modification on the current searching path scheme where the AUV

continuously gather information of adjacent legs from the side-scan sonars and use the

observations to determine whether skip or keep going on to the next leg. We believe

that the sonar detection network described in Section 4.3.1 is capable of providing

sufficient information of the unvisited path for monitoring the population of objects

of interest. And this alteration on the search path planning intends to reduce mission

times and memory usage for image collection.

Deep reinforcement learning (RL) methods proposed in the recent have shown

142



the capability of decision-making problems in multi-dimensional spaces. Hence a vision-

based deep RL model that allows the AUV to perform autonomous target-driven ex-

ploration in an given mission area would be interesting to probe. The model takes

camera-captured RGB images and sonar information as inputs and outputs actions

for the next movement. Typical deep RL methods have the target location imbedded

in the parameters of the model which requires to retrain the model for each new tar-

get. However in our case there are normally more than one interest locations within a

mission area results in multiple navigation targets thus retraining the model for every

target would be tedious. [156] suggests that both current state and target destination

should be included as the input to learn a stochastic policy and generate probability

distribution across actions. Involving target locations in the input provides general-

ization capability to the model for navigation to new targets without retraining. For

the navigation model, the downward-facing camera at the front collecting RGB images

provides representations for current state and the side-scan sonars observes the rest of

the scene. Outputs from the sonar detection network produce information of which

the next target is located. As there are common low-level mechanical limitations of

real-world robots, we portray the environment as a grid map and analyze command-

level actions including moving forward, turning left, and turning right. The turning

radius depends on body length of the vehicle and its current speed so we consider two

turning angle: 90 degree and 45 degree. As the goal of this agent is to navigate to the

target location in shortest path, we design a reward function that gives a large positive

reward when the agent reaches the goal destination as well as a small penalty for every

step it takes to encourage the agent always seeking for minimum distance from current

spot to the destination.pppppppppppppppppppppppppp
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