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Abstract. We present a system for automatic analysis of videos of in-
fant actions and infant-caregiver interactions during in-home play ses-
sions. Variables examined include the posture of the infant (sitting,
standing, prone, supine, etc.) and whether they are supported in that
position by an inanimate object or assisted by a caregiver and at what
body location. Leveraging recent advances in neural monocular depth es-
timation, human body keypoints are lifted from 2-D to 3-D to compute
metric distance and angle features, and 3-D scene properties such as the
floor plane are estimated to put detections in a global spatial context.
We demonstrate strong performance on related pose estimation and pos-
ture benchmarks as well as vs. state-of-the-art methods on a challenging
new naturalistic video dataset featuring complex interactions in clut-
tered scenes. We believe that this approach shows promise as a tool for
scaling up infant motor developmental studies and is extensible to other
developmental domains and age groups.

Keywords: Interaction recognition · pose estimation · monocular depth
estimation · object detection

1 Introduction

In this work we describe a novel approach to automatically analyzing videos of
household scenes of infants and caregivers at play that were gathered for pediatric
physical therapy research. Formal assessments of capacity (what a child can do)
and performance (what they actually do) are a crucial part of developmental
monitoring, but they can be very labor intensive [10]. The protocol for the study
from which our primary dataset (described in detail in Sec. 2) was gathered,
for example, requires trained human analysts to annotate video recordings with
timestamped "codes" of infant posture, location, object manipulation, parent
proximity, and so on. Unfortunately, coding just a few variables over 1 minute
of video often takes an experienced analyst 20+ minutes, making scaling up to
more subjects, longer interactions, and richer sets of variables impractical.

Object/person detection [2,22] and human pose estimation (aka body key-
point detection) [1,4,23] in images and videos are classical computer vision prob-
lems which are closely tied to higher-level tasks like pose classification and action
recognition [6,30]. Recently there has been interest in applying these techniques
to infants and children for therapeutic and developmental purposes [5,11,15,26].
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Different body proportions, posture distributions, and action types vs. adults
have led to a variety of approaches, including the development of a linear infant
body model [13] and efforts to fine-tune foundation models on smaller infant
datasets [9,14,16,31].

Here we focus on extracting from a video the following two time-indexed
variables of interest for child development. First, posture (aka position): is the
infant sitting, standing, prone, or in one of several other possible positions?
Second, what is providing support in that pose and where is it being provided?
Is a caregiver holding them by their torso or upper arms? Are they lying with
their head on the floor or sitting independently, unsupported above their hips?
Are they leaning against a pillow? (1) can be regarded as a traditional action
recognition problem but (2) depends on the interaction of the infant with other
people and fixed objects in the environment.

It seems self-evident that the essential information required to accurately
assess these variables is spatial. How far are the infant’s body parts from one
another? What are the angles of their joints? What is their orientation in a global
coordinate frame? Are an adult’s hands in contact with them? In each image such
relationships are only directly measurable in 2-D, leaving critical ambiguities [16].
Fitting 3-D body models to detected 2-D keypoints can overcome some of these
limitations [13,15,16], but is still underconstrained without 3-D information such
as from a RGB-D camera [12,16], which may not be available or was not used to
collect legacy data. Instead, we seek to demonstrate that recent neural models for
inferring scene depth from monocular images [28] have become accurate enough
to consider them as aids for this problem. Pseudo-depth images allow coarse 3-D
spatial reasoning about distances and angles and also enable reasoning about
scene context in 3-D. Is the infant standing on the floor or lying on it? Certain
camera angles can make it impossible to tell in just 2-D, but with 3-D information
there is hope of differentiating these and other tricky situations.

This paper describes a modular, explainable system for combining semantic
and structural information, as well as temporal, to reason about infant-caregiver
and infant-scene spatial relationships in order to make accurate inferences about
actions and interactions. We further introduce a video dataset collected in sub-
ject homes that is wide-ranging, naturalistic, and difficult, with cluttered images,
bad lighting and framing, and mutual occlusions. We demonstrate strong perfor-
mance by our system on some related benchmarks as well as this new dataset,
and show that it compares very favorably for this task to a range of other ap-
proaches including state-of-the-art image understanding systems such as Google
Gemini 1.5 Pro and OpenAI ChatGPT-4o.

2 Datasets

PLAY-92 We created a dataset from 92 roughly 10-minute videos of in-home
infant-caregiver interactions spanning 41 subjects (twins and triplets were ex-
cluded) ranging in age from 1-9 months old. The videos were made – up to
several months apart if of the same subject – by researchers as well as parents,
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Fig. 1. PLAY-92 train_10s sample images

some from tripod-mounted cameras, some from propped phones, and some as
recorded Zoom calls. They exhibit a wide range of quality in terms of scene
framing, lighting, and resolution1. Example images are shown in Fig. 1.

Two key variables are "coded" (i.e. annotated): (1) infant position and (2) in-
fant level of support.2. Position is overall body posture with 7 categories: supine,
prone, sit, and stand (as in [16]), but also "in-between" poses side (lying but
neither prone nor supine) and reclined / inclined (trunk neither vertical nor
horizontal). "All fours" (aka crawling) from [11] is coded here as prone.

Level of support is a combination of two factors: the "highest" point on the
infant body that is supported, and what provides the support. From high to
low, there are 5 coded levels: head and neck, arm and hands, upper trunk, lower
trunk, and hips. Two possible sources of support are coded: "p" for another
person (either actively or passively), and "o" for an inanimate object such as
the floor, a chair, pillow, exersaucer, etc. Putting these together, there are 10
categories: headp, heado, armp, armo, upp, upo, lowp, lowo, hipp, and hipo.

Ground-truth coding consists of start and stop times for action variable val-
ues. For example, "the infant position is prone from 0:00 to 0:32; then sit from
0:33 until 1:07," and so on. Roughly the middle 4 minutes of each session were
coded by trained personnel according to a written protocol, yielding 6+ hours
of coded video.

1 11 videos are 640× 360, 28 are 1280× 720, and 53 are 1920× 1080
2 Several other variables (infant location, arm and leg mobility, and hand/foot toy

interaction; caregiver toy interaction; and infant-caregiver gaze interaction) were
coded, but we do not study them here as this is preliminary work
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A 60/20/20 split yielded 56 training videos, 18 validation videos, and 18
testing videos. For purposes of training and evaluation here, the videos were
sampled at 10-second intervals, resulting in 25 images per video → 1400 training
images (train_10s), 449 validation images (val_10s), and 449 testing images
(test_10s) (not 450 because the coded range for one video each in val and test
was non-trivially shorter than 240 seconds). Category frequencies for train_10s
and val_10s are shown in Figure 2.

All PLAY-92 images shown in this paper contain only select study participants
who consented to their depiction and dissemination (meaning that the entire
raw dataset, unfortunately, cannot currently be distributed). We have further
pixellated faces where possible for anonymity.
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Fig. 2. PLAY-92 train_10s and val_10s category frequencies

SyRIP [14] The Synthetic/Real Infant Pose dataset includes 700 real infant im-
ages ("newborn to one year old") collected from internet photos and video clips,
plus 1000 synthetically generated images. The training set consists of 200 real
images plus the synthetic images, and the full test set is 500 real images. 100
of the test images are designated a "challenging subset" called Test100. Each
image contains exactly one infant and no other people; annotations include a
bounding box and 17 ground-truth COCO 2017 keypoints. Some images are
from the same videos and thus have the same subject, some images are studio-
type photographs with homogeneous backgrounds, some are outdoors, some are
pillarboxed vertical video, and some have prominent text and other graphical
overlays.

SyRIP_Posture [16] This dataset is a re-split of SyRIP into 600 real training
images and 100 validation images which are the same as SyRIP’s Test100, with
the addition of a posture label annotation chosen from {supine, prone, sit,
stand}.
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3 Methods

Our overall video processing system, which analyzes interactions between rele-
vant scene entities based on spatial proximity, is diagrammed in Fig. 3. There are
two main pathways flowing from the stack of RGB input images in the upper left:
semantic, in which relevant objects are detected and segmented; and structural,
in which 3-D depths are estimated per pixel. The current frame is denoted t in
a video consisting of or sampled down to T total frames. Several forms of batch
temporal analysis are performed in order to ensure consistent interpretations
across the T frames, but when images are known to be independent or video
membership information is not given (as in the case of SyRIP/ SyRIP_Posture),
such steps are dropped.
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Fig. 3. Steps in video processing pipeline. Grounded Segment Anything [21], Depth
Anything [28], MMPose [23], Segment Anything (SA) [20], CoTracker [19], and XG-
Boost [3] are external libaries. The crops in the temporal grouping section have been
scaled to align for display.

For initial semantic analysis, we detect objects of interest in each of the
T frames of the video. In this work these are people, specifically infants and
potential caregivers including adults and older children; and regions associated
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with the floor/ground plane. For flexibility in specifying sets of pertinent objects,
we use the Grounded Segment Anything (GSA) [21] open object detector, which
does not require retraining to ground natural language queries in an image with
detection Transformer (DETR) [2] bounding boxes. We use the Swin-B (base)
DETR variation, as Swin-L (large) weights that work with GSA were not publicly
available. The prompt is a simple noun list – see Sec. 4 for the specific words used.
Each detection has a confidence and a segmentation mask obtained by running
Segment Anything (SA) [20] on the bounding box. Sample object detection boxes
and masks are shown in the middle left image of Fig. 3.

To gain insight into the 3-D scene structure of the input video images, we
apply the monocular depth estimation network of Depth Anything [28] to every
frame to obtain a stack of T depth images. Specifically, we use the NYUv2-
trained indoor version of the network to infer nominal metric depths for all
pixels. We call this step Metric Depth Anything (MDA) and an example output
is shown in the top right of Fig. 3. [28]’s depth estimation network accepts any
size input image, but its output is always scaled to 518 × 392, so subsequent
steps in the pipeline work in this coordinate system.

3.1 Floor/ground plane estimation

The floor/ground plane establishes the gravity vector, which enables global ori-
entation inference for each person detected in the scene. At the most basic level,
plane parameters are estimated through a least-squares fit on the MDA-derived
(x, y, z) coordinates of every pixel that the GSA semantic segmentation step
deems to belong to the floor or ground. Simply searching for the "floor" or
"ground" region is not always sufficient, so we add keywords like "rug" and
"carpet" (see Sec. 4 for exact word list) and take the union of all category masks
returned to yield the floor mask. There are few false positives for the majority of
videos (even pillarboxes in vertical videos such as the top right image of Fig. 1
are usually ignored), but misclassified regions necessitate outlier handling. For
individual images, robust fitting is achieved through Random Sample Consen-
sus (RANSAC) [7], which concurrently classifies 3-D points as inliers or outliers
and fits a plane to the inliers. Furthermore, we optionally constrain solutions to
"realistic" angular ranges to filter out situations where the plane is erroneously
fit to a wall or other vertical surface.

For multi-frame videos, even when the camera is not moving, applying
RANSAC to each frame individually can result in variable plane estimates due to
several factors: (1) GSA may change entire region classifications based on small
pixel changes or occlusions due to people moving around the scene; (2) RANSAC
itself is non-deterministic even with the same floor masks; and (3) MDA’s depth
estimates, while similar, can vary based on camera noise or exposure changes.
It is also possible that due to thresholds on the minimum number of inliers or
the angle limits mentioned above, the ground plane may not be detected in one
frame of a video while it is in the rest.

Thus, we extend our RANSAC scheme to obtain consistent multi-frame plane
estimates as follows (assuming that the camera is completely static or only repo-
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sitioned discretely). First, the video is broken into segments in which the camera
view is static. This may be part of the dataset annotations or it can be done
automatically via shot boundary detection [18]. Next, single-frame RANSAC is
applied to all video frames. For each static segment, we measure the support for
every frame’s candidate plane by summing the number of inliers of other frames’
planes whose pitch and roll angles are within some ϵ, and pick the "best" plane
solution to use for the entire segment as the one with maximal support. In ad-
dition to eliminating noise and outliers vs. single-frame floor plane estimates,
this approach also allows accurate floor plane interpolation to individual frames
where it is impossible – because of a transient occlusion, for example.

A sample estimated floor plane is visualized as a grid drawn only on the floor
mask pixels in the middle right image of Fig. 3. We also note that when the
camera pitch angle is level or slightly upward, as is the case in the middle left
and bottom right images in Fig. 1, the floor may never be visible and this is
explicitly detected.

3.2 Lifting 2-D keypoints to 3-D

Fig. 4. COCO
keypoints [4]

The COCO Keypoints 2017 dataset [4] consists of 17 landmarks
on the body and face as shown in Fig. 4. Keypoint 0 is the nose,
1-2 are the eyes, 3-4 the ears, and so on. We tested a variety
of 2-D body keypoint detection models from the popular open-
source library MMPose [23] and observed superior performance
with ViTPose-H [27]. Although this and other models (we also
tested RTMPose-M and RTMPose-L [17]) performed quite well
on infants without any fine-tuning, they were all sensitive to
orientation to some degree. That is, upright views of infants often
garnered the best keypoint detections, while upside-down and
sideways views (associated with prone/supine positions) were
correlated with lower quality, presumably because such postures
were underrepresented in an adult-dominated training set. To
mitigate this, we rotate every infant detection crop 0◦, 90◦, 180◦, and 270◦

before presenting it to the keypoint detector, select the rotation whose keypoints
have the highest median confidence, and use those rotated back to the original
orientation. Although the detector gives a location for every keypoint, we treat
keypoints with confidences below a threshold τ as "missing."

Nominal 3-D keypoint locations are inferred by looking up their depth values
in the MDA monocular depth estimate at the 2-D keypoint pixel coordinates
(xi, yi), as illustrated in Fig. 5. The neurally-inferred metric values themselves
have some errors (quantified for general scenes in [28]), but we do not need them
to be extremely accurate for our inference to work. Nonetheless, this approach
has other issues which may lead to errors. First, the MDA depth image is fairly
low resolution and body part details may be blurred or lost. Second, slight mis-
alignments between keypoint locations and body part depth edges may result in
depth values being read from the background rather than the body part itself
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(a) (b) (c)

Fig. 5. Sample infant detections from a PLAY-92 training video with inferred ViTPose-
H keypoints [27] and ground plane estimates overlaid on MDA-estimated depth images
[28]. Caregiver arm keypoints are visible in (c)

(e.g., the infant’s nose in Fig. 5(a)). Finally, the depth value read may not cor-
respond to the actual body part but instead a nearer surface like the front side
of the body (e.g., most right-side body parts in Fig. 5(b)) or another person or
scene element (e.g., the caregiver’s arm blocking the infant’s left shoulder and
elbow in Fig. 5(c)).

3.3 Consistent infant/caregiver discrimination

In order to correctly compute infant-specific and infant-caregiver interaction fea-
tures, it is necessary to identify each category of person detected explicitly. We
assume that scenes contain a maximum of one infant per image (there are no
twins or triplets in PLAY-92) and that all other people, including toddler sib-
lings (e.g., in pink in top center of Fig. 1), are non-infants and therefore potential
caregivers. Our GSA detector prompt includes keywords "infant" and "adult"
(a term which we use interchangeably with "caregiver" and "non-infant"), so
it’s straightforward to pick the maximum likelihood infant based on the highest
confidence Swin-B infant detection. However, this approach yields a small but
unacceptably high number of errors. First, the detector sometimes returns mul-
tiple bounding boxes on the same person. Second, it occasionally returns false
positives on dolls, mirror reflections, and small children or adults in hunched
postures.

We had good success filtering out the first type of error with a form of
non-maximum suppression based on computing the SA [20] masks Mt

i for all
infant detection bounding boxes i in a frame t and identifying problem pairs
{Mt

i,M
t
j} whose masks have a large overlap relative to their area (e.g., ≥ 0.9).

For such pairs, the detection with the lower overlap fraction is discarded, as
this tends to eliminate "looser" fits. To reduce the second type of error, we
trained an infant/caregiver classifier combining the detection label with 12 3-D
body part size features measured from the keypoints and MDA depth estimate.
These features were the bilateral lengths of the lower leg, upper leg, forearm,
upper arm, and torso (shoulder to hip), plus the shoulder to shoulder and hip
to hip distances. The classifier was gradient-boosted decision trees [3], which is
discussed more in Sec. 3.4.
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If the input is a video (possibly sampled at intervals as with PLAY-92’s
train/val_10s), we temporally group infant detections via tracking to make
this classifier’s predictions consistent vs. running it on each frame independently.
Suppose after filtering and per-frame classification we have a set of candidate
infant detections and their SA masks {Mt

i} in frame t, and a set {Mt+1
j } in

the next sampled frame t+ 1. If there are still false positives after filtering and
per-frame classification, i = j does not necessarily mean that these are the same
infant. So we match as follows: first, grid sets of points Pt

i are initialized by Co-
Tracker [19] from each mask (see middle column of temporal grouping section in
Fig. 3). Next, these point sets are tracked forward to t+1 through intermediate
frames at a higher temporal resolution, yielding

−→
P t

i (shown in the right column
of Fig. 3’s temporal grouping section). Some tracked points are lost and some are
marked non-visible. If enough points "survive," a match score consisting of the
fraction inside each infant mask j in the next frame f(

−→
P t

i,M
t+1
j ) is computed,

and if the highest score is over a threshold, infant detections i in frame t and
argmaxjf(

−→
P t

i,M
t+1
j ) in t+1 are grouped together. Finally, all nominal infant de-

tections grouped together in a video vote for their infant/caregiver classification
and the winning category is imposed on all group members.

3.4 Feature computation and inference

The core of both the position and support variables of the PLAY-92 dataset
concerns the infant’s overall posture, which we believe can be discriminated
from 3-D body part distances and angles. We use the following 31 infant-derived
features for position:

– Height off floor (17): 3-D point to floor plane distance for each body part
keypoint, in meters. This should indicate grossly vertical vs. horizontal or
bent configurations.

– Torso orientation (4): Angle in degrees between the floor plane normal and
normal of plane fit to front of torso. As a proxy for a robustly-fit single
plane, we compute this for each of 4 planes defined by triplets taken from
the set {left hip, right hip, left shoulder, right shoulder}. This can be useful
for differentiating between prone and supine, as floor heights alone may still
be ambiguous.

– Joint angles (10): 3-D angle in degrees made by the following 5 triplets of
keypoints: shoulder-elbow-hand, hip-shoulder-elbow, shoulder-hip-knee, hip-
knee-foot, and hip-shoulder-ear, bilaterally. These features provide some pos-
ture information even when the floor plane cannot be estimated.

The support variable further depends on whether a caregiver is in contact
with the infant and at what body "level" that support occurs. To learn this,
we start with the 31 position features above and add 17 more measuring the
proximity of every infant body part to the nearest caregiver hand position, in
meters, for a total of 48. By "nearest," we mean hand rather than the entire



10 C. Rasmussen, A. Kiruga, J. Orlando, and M. Lobo

person. It could be either hand of a single caregiver, or any hand of multiple
caregivers in the scene.

To learn from these features, we use the gradient-boosted decision trees
paradigm of XGBoost [3]. There are several reasons for this. First, decision
trees are very flexible about heterogeneous feature types, including accepting
NaN’s to represent missing features. Because a missing keypoint means that any
feature which references it cannot be computed, and all features that reference
the floor plane cannot be computed when a floor plane estimate is unavailable,
missing data is an unavoidable characteristic of both position and support as
well as the infant/caregiver classifier of Sec. 3.3. Second, we have relatively little
training data compared to the scale typically expected for deep learning. Finally,
the learned trees are more easily explainable and amenable to modification than
deep neural network weights, for example.

4 Results

4.1 SyRIP and SyRIP_Posture

Accuracy on COCO 2017 body keypoints is quantified by how many are found
within a threshold distance of their ground truth 2-D image locations. In [14]
the average precision (AP) of a variety of methods on their own SyRIP dataset’s
Test100 are assessed, and the highest score is achieved by their DarkPose +
FiDIP ("fine-tuned domain-adapted infant pose") with an AP of 0.936. In con-
trast, our MMPose-based ViTPose-H network achieves an AP of 0.987 on the
test set with no fine-tuning.

Taking as input the 2-D image coordinates of 12 body keypoints from the
17 produced by the DarkPose + FiDIP keypoint detector of [14], normalized
to a common scale, [16] trains a 4-layer fully-connected classifier network on
SyRIP_Posture’s 4 posture categories {supine, prone, sit, stand}. They report
a 90.0% test set classification accuracy.

Using our system outlined in Sec. 3, we trained on the 600 training images
of SyRIP_Posture – with the same gradient-boosted trees and hyperparame-
ters as for the PLAY-92 position results reported in the next section. Because
outdoor images are part of this dataset, we modified the GSA prompt to the
following: "floor . rug . carpet . play mat . ground . grass . dirt . pavement".
We manually masked out color pillarboxes, which sometimes confused GSA, on
the assumption that they could easily be detected with a separate filter. The
highest confidence infant detection was used and no angular constraints were
placed on plane estimates, as there are a number of top-down views not present
in PLAY-92. We obtained a test set accuracy of 92.0%, and note that 2 of the 8
incorrectly-classified images were studio photographs with all-white backgrounds
that resulted in erroneous floor plane estimates.

4.2 PLAY-92

We assessed the performance of our full system on PLAY-92’s validation subset
val_10s (test_10s is still withheld for future work), which as described in Sec. 2
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consists of 18 sequences of 25 frames (4-minute videos sampled at 10 s intervals).
Training of the position, support, and infant/caregiver XGBoost classifiers was
carried out on the train_10s subset, which is similarly sampled from 56 videos.

The full GSA prompt for object detection was "infant . adult . floor .
rug . carpet . play mat . toy . book . cup . ball . rattle . face .
hand . foot", and the Swin-B object detection confidence threshold was 0.4.
For a number of images the infant was completely or partially out of frame, and
the detector found at least one infant in 1342/1400 (95.9%) train_10s images
and 446/449 (99.3%) val_10s images. With a ViTPose-H keypoint confidence
threshold of 0.4, an average of 15.43/17 "good" body keypoints were found in
each val_10s image containing an infant detection.

The angular range for plane fitting was pitch in [−55◦, 25◦] and roll in
[−15◦, 15◦], and the multi-frame RANSAC angle ϵ was 5◦. Tracking in the tem-
poral grouping step of Sec. 3.3 was carried out at 6 fps, the minimum number of
surviving tracked points to calculate a match score was 5, and the minimum score
to match infant detections was 0.5. The temporal group-based infant/caregiver
classifier achieved 99.7% accuracy on val_10s.

As explained in Sec. 3.4, the feature sets used to train XGBoost on posi-
tion and support were slightly different. XGBoost hyperparameters for both had
default values except (n_estimators, eta, max_depth, min_child_weight) =
(50, 0.1, 3, 4) for position and (50, 0.1, 2, 5) for support.

Table 1. Accuracies for all methods on PLAY-92 val_10s. F1 score is weighted.

Position Support

Method Top-1 Top-2 F1 Top-1 Top-2 F1
ZeroR 40.1 – 22.9 37.6 – 20.6
DINOv2-base [25] MLP 70.8 86.2 62.4 59.5 75.9 49.9
Gemini 1.5 Pro [8] 77.7 – 79.3 59.7 – 61.6
ChatGPT-4o [24] 83.1 – 81.5 62.6 – 60.3
Ours 82.2 90.0 81.0 73.1 87.1 71.7

Classification accuracy results for position and support are given in Table 1,
along with a number of other alternative methods (explained below) that we ran
for comparison since PLAY-92 is a new dataset without established benchmarks.
Our system exhibits strong performance in an absolute sense given the difficulty
of the images, and is at or near the top of the rankings of all methods tested.
Only ChatGPT-4o [24], a state-of-the-art end-to-end text, vision, and audio
understanding network with hundreds of billions of parameters that took months
to train, was better at anything, scoring 0.9% higher on top-1 position accuracy.

We report top-2 accuracies because the ambiguity of intermediate position
categories like side, inclined, and reclined means that they are often confused
with "nearby" categories such as prone, supine, sit, and stand. A similar
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side : supine sit : prone headp : upp

Fig. 6. Selected failure cases on ambiguous/subtle PLAY-92 val_10s images, captioned
with ground-truth : prediction. In the middle image the infant’s chest is on the floor
but they are doubled over as never seen in training. In the right image, the infant’s
head is touching the caregiver’s shoulder, superseding the hands on their torso

issue arises with nearby body levels in support – e.g., the difference between the
caregiver holding the infant by their upper torso (upp) or lower torso (lowp) may
be just a few centimeters. Several such failure cases are shown in Fig. 6.

Alternative methods The so-called "Zero Rule" (ZeroR) classifier, which just
picks the highest frequency category in the training data for the variable to
be inferred (as seen in Fig. 2), represents minimal performance as it uses no
information from the images themselves.

In order to gauge what is possible with a neural network classifier that works
from image pixels directly, we trained a multi-layer perceptron (MLP) with 3
layers and 1024 hidden units on DINOv2-base [25] embeddings of the infant
detection crops (after infant/caregiver classification). We reasoned that using
the infant crops rather than the entire image would simplify the task and still
convey sufficient information for accurate inference. This is clear enough for
position, but we justify excluding the caregiver crops from support training by
asserting that caregiver hands, if touching the infant, would likely be visible in
the infant crop. The input to the MLP was the 768-D class token concatenated
to the mean of the 768-D patch tokens → 1536-D. Training was carried out for
50 epochs with a 0.02 learning rate and the Adam optimizer.3

Taking this farther with state-of-the-art image understanding systems, we
ran OpenAI’s flagship multimodal large language model ChatGPT-4o [24] and
Google’s Gemini 1.5 Pro [8] on each image in val_10s individually. Here we
submitted the entire image rather than a crop, allowing a wide range of con-
textual cues to be analyzed. The prompt included comprehensive definitions of
the variables of interest and a request for the inferred coding values in struc-
tured JSON format. Both systems had a few spurious responses that were not
in the requested categories, and Gemini 1.5 Pro refused to answer for 10 (2.2%)
of the images in val_10s because its safety filters blocked the prompt with no
explanation. All such responses were simply counted as wrong rather than being
corrected with ad-hoc post-processing.
3 These parameters were the best after a sweep over different numbers of hidden units,

learning rates, optimizers, and augmentations
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5 Conclusion

This paper has presented promising preliminary results on automatically ana-
lyzing infant interaction videos as a tool for monitoring early childhood motor
development. We believe that elements of our system could easily be adapted
to other early childhood developmental domains, as well as aging in place issues
like fall detection, memory assistance, and in-home stroke rehabilitation.

We are currently investigating additional variables from those listed in Sec. 2,
particularly toy manipulation/awareness and infant/caregiver gaze directions.
Ongoing work includes converting video analysis from batch to online, using
higher-resolution monocular depth estimation approaches [29], and integrating
3-D SMIL model fitting with assistance from the depth estimates.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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