Difference between revisions of "CISC367 S2023"
(→Schedule) |
(→Schedule) |
||
(154 intermediate revisions by the same user not shown) | |||
Line 22: | Line 22: | ||
|- | |- | ||
|align="right"|'''Office hours''' | |align="right"|'''Office hours''' | ||
− | |Wednesdays and Fridays, 9:55-11 am in Smith 211 (starting Feb. 10) | + | |Mondays, 9-10:30 am and Wednesdays and Fridays, 9:55-11 am in Smith 211 (starting Feb. 10) |
|- | |- | ||
|align="right"|'''Grading''' | |align="right"|'''Grading''' | ||
Line 44: | Line 44: | ||
|} | |} | ||
− | ==Instructions== | + | ==Instructions/Resources== |
{| class="wikitable" border="0" cellpadding="5" width="1600px" | {| class="wikitable" border="0" cellpadding="5" width="1600px" | ||
!width="5%"| | !width="5%"| | ||
Line 70: | Line 70: | ||
Working backwards from the ROS requirements there are 3 options for your laptop... | Working backwards from the ROS requirements there are 3 options for your laptop... | ||
* Linux: Ubuntu Desktop 22.04 LTS. [https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview Installation instructions] | * Linux: Ubuntu Desktop 22.04 LTS. [https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview Installation instructions] | ||
− | * Windows: Version 10. | + | * Windows: Version 10. |
− | * MacOS: Mojave 10.14 | + | * MacOS: Mojave 10.14. Several students have had success on HW #1 by installing Ubuntu in a [https://mac.getutm.app/ UTM] VM. Bridging mode was necessary for wifi |
|- | |- | ||
|align="right"|'''[https://docs.ros.org/en/humble/Releases/Release-Humble-Hawksbill.html ROS2]''' | |align="right"|'''[https://docs.ros.org/en/humble/Releases/Release-Humble-Hawksbill.html ROS2]''' | ||
Line 95: | Line 95: | ||
* Further changes to make are detailed in 8/30 lecture notes, but [[CISC829_F2012_TurtleBot_Changes|here they are in one place]] | * Further changes to make are detailed in 8/30 lecture notes, but [[CISC829_F2012_TurtleBot_Changes|here they are in one place]] | ||
--> | --> | ||
+ | |- | ||
+ | |align="right"|'''Readings''' | ||
+ | | | ||
+ | * K. Lynch and F. Park, ''Modern Robotics'' (MR), 2019 | ||
+ | * P. Corke, ''Robotics, Vision, and Control'' (RVC), 2017 | ||
+ | * K. Astrom and R. Murray, ''Feedback Systems'' (FS), 2008 | ||
+ | * S. Lavalle, [http://lavalle.pl/planning/ ''Planning Algorithms''] (PA), 2006 | ||
|- | |- | ||
|align="right"|'''[http://gazebosim.org/ Gazebo]''' | |align="right"|'''[http://gazebosim.org/ Gazebo]''' | ||
Line 180: | Line 187: | ||
!width="22%"|Topic | !width="22%"|Topic | ||
!width="15%"|Notes | !width="15%"|Notes | ||
− | !width="32%"|Readings | + | !width="32%"|Readings/links |
!width="20%"|Assignments/slides | !width="20%"|Assignments/slides | ||
|- | |- | ||
Line 188: | Line 195: | ||
|Background, course information | |Background, course information | ||
| | | | ||
− | | | + | |[https://docs.google.com/presentation/d/1YlBdcK4n1xprJ1EvvRiFsiYp1fWaI6n-O_R7i4ELcHk/edit?usp=sharing slides] |
|- | |- | ||
|2 | |2 | ||
|Feb. 10 | |Feb. 10 | ||
|hello robot, hello ROS | |hello robot, hello ROS | ||
− | |ROS basics, Create | + | |ROS basics, Create ROS interface<!--Installation, hello ROS--> |
− | | | + | |[https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries.html Creating & building ROS2 packages], [https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html ROS2 nodes],<br>[https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html ROS2 topics], [https://iroboteducation.github.io/create3_docs/api/ros2/ Create 3 topics] |
− | + | |[https://docs.google.com/presentation/d/1-1muKV86WozEMa3fSaM2hSziz1N9ggM6BrqqXCQ6Qrg/edit?usp=sharing slides]<br>[https://docs.google.com/document/d/1O-Lk3YdKJYOX0Pc4UWk37c7hMzzTy3PCZESInEYB1Ak/edit?usp=sharing HW #1] | |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|3 | |style="background:rgb(102, 204, 255)"|3 | ||
|Feb. 15 | |Feb. 15 | ||
− | |Kinematics<!--ROS/Gazebo --> | + | |Kinematics/Dynamics<!--ROS/Gazebo --> |
− | | | + | |Degrees of freedom, configuration space; wheeled systems (unicycle/car vs. differential drive)<!--Writing simple ROS programs--> |
− | | | + | |[http://nameless.cis.udel.edu/class_data/cisc367_s2023/mr_chap2.pdf MR Chap. 2], [http://lavalle.pl/planning/ch13.pdf PA Chap. 13.1.2] |
| | | | ||
− | + | [https://docs.google.com/presentation/d/1wvJSl9fRQoGhRQ02BJgbhqncMszmAafsvNy3Nl0Cbdk/edit?usp=sharing slides] | |
|- | |- | ||
|4 | |4 | ||
|Feb. 17 | |Feb. 17 | ||
− | |Kinematics<!--ROS/Gazebo--> | + | |Kinematics/Dynamics<!--ROS/Gazebo--> |
− | |Odometry, | + | |URDFs, ROS <tt>rviz2</tt> and <tt>tf2</tt>, odometry<!--Odometry, ground truth positions--> |
− | | | + | |[https://turtlebot.github.io/turtlebot4-user-manual/software/rviz.html rviz2 user manual (Turtlebot3)], [https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Introduction-To-Tf2.html Introduction to tf2], [http://nameless.cis.udel.edu/class_data/cisc367_s2023/mr_odometry.pdf MR Chap. 13.4] <!-- [https://docs.ros.org/en/humble/Tutorials/Advanced/Simulators/Gazebo.html robot_state_publisher]--> |
− | + | |[https://docs.google.com/presentation/d/1HLQ4T4XW0T3jS112b8XO9CeJV1pmjZQVmhG-mPCn0gU/edit?usp=sharing slides]<br>''HW #1 due''<!--[https://docs.google.com/presentation/d/1j-oEgsL4DRU_EwcmBwKiCwmEYsKa3owOYrnZaMtW1Rg/edit slides] --> | |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|5 | |style="background:rgb(102, 204, 255)"|5 | ||
|Feb. 22 | |Feb. 22 | ||
− | | | + | |More ROS + Controllers<!--Motion planning--> |
− | |ROS | + | |ROS 2 workspaces and packages, subscribing and publishing, and timer callbacks; basic feedback controller concepts<!--Background, kinematics, PID control--> |
− | | | + | |[http://nameless.cis.udel.edu/class_data/cisc367_s2023/fs_chap1.pdf FS Chap. 1] |
<!-- | <!-- | ||
*[http://robots.stanford.edu/probabilistic-robotics/ppt/wheeled-locomotion.ppt Thrun ''et al.'' wheeled locomotion slides] | *[http://robots.stanford.edu/probabilistic-robotics/ppt/wheeled-locomotion.ppt Thrun ''et al.'' wheeled locomotion slides] | ||
*LaValle, Chap. [http://planning.cs.uiuc.edu/ch13.pdf 13.1.2] | *LaValle, Chap. [http://planning.cs.uiuc.edu/ch13.pdf 13.1.2] | ||
--> | --> | ||
− | |HW #2<!--[https://docs.google.com/presentation/d/1oGMcAJ5JgQKJ-32R_aOcCzvvZIdU3wqWq9Cxt7pks6s/edit slides]--> | + | |[https://docs.google.com/presentation/d/1nt3iCgqcPpAbYf-wsvbfmXEB5r_c-PiW9naKdUBKbkc/edit?usp=sharing slides]<br>[https://docs.google.com/document/d/1Wi37IMjnFE_q8lPkglzqp5TNFQhS9ziT0adj7g196hw/edit?usp=sharing HW #2]<!--[https://docs.google.com/presentation/d/1oGMcAJ5JgQKJ-32R_aOcCzvvZIdU3wqWq9Cxt7pks6s/edit slides]--> |
|- | |- | ||
|6 | |6 | ||
|Feb. 24 | |Feb. 24 | ||
− | | | + | |Controllers<!--Motion planning--> |
− | | | + | |Waypoint following, line following, trajectory and wall following (pure pursuit)<!--Homing controllers, occupancy grid and grid-based planning --> |
− | | | + | |[http://nameless.cis.udel.edu/class_data/cisc367_s2023/978-3-319-54413-7_4.pdf RVC Chap. 4-4.1.2] |
<!--* LaValle Chaps. [http://msl.cs.uiuc.edu/planning/ch1.pdf 1 (skip 1.5)], [http://planning.cs.uiuc.edu/ch15.pdf 15.3-15.3.2]--> | <!--* LaValle Chaps. [http://msl.cs.uiuc.edu/planning/ch1.pdf 1 (skip 1.5)], [http://planning.cs.uiuc.edu/ch15.pdf 15.3-15.3.2]--> | ||
− | | | + | |[https://docs.google.com/presentation/d/1qDLmy_PEbZuUffjOEfV65U1L_WLD1RNjjiOSrVTa0ro/edit?usp=sharing slides] |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|7 | |style="background:rgb(102, 204, 255)"|7 | ||
|Mar. 1 | |Mar. 1 | ||
− | | | + | |HW #2<!--Motion planning--> |
− | | | + | |Coding time<!--Explanation of nav code (ROS [http://www.ros.org/wiki/costmap_2d costmap_2d] and [http://www.ros.org/wiki/navfn navfn], trajectory following, replanning), putting moving objects in Gazebo world--> |
| | | | ||
<!--*[http://www.kavrakilab.org/iros2011 MP workshop at IROS 2011]--> | <!--*[http://www.kavrakilab.org/iros2011 MP workshop at IROS 2011]--> | ||
− | | | + | |[https://docs.google.com/document/d/1N1xhL7z1E6cC12X1Ch6hbqC1o7yJ6hfZ7yRN5Kl1e1Q/edit?usp=sharing Starter code for Python <tt>wanderer</tt>]<br> |
− | + | [https://docs.google.com/presentation/d/1MNZsoDwsiCzoJiQ-Ck4ljHeW-1wnk0a3_2DmCu01WXM/edit?usp=sharing slides] | |
|- | |- | ||
|8 | |8 | ||
|Mar. 3 | |Mar. 3 | ||
− | | | + | |Costmaps and discrete motion planning |
− | | | + | |Connecting to the lidar sensor; representing the environment as a map and basic planning |
− | + | |[https://index.ros.org/r/rplidar_ros/#humble rplidar_ros]; [http://nameless.cis.udel.edu/class_data/cisc367_s2023/mr_chap10.4.pdf MR Chap. 10.4], <br>[https://people.eecs.berkeley.edu/~pabbeel/cs287-fa13/slides/MappingWithKnownPoses.pdf Abbeel slides] (skip SLAM, reflection maps) | |
<!-- | <!-- | ||
*[http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf Choset's Bug slides] | *[http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf Choset's Bug slides] | ||
*[http://www.youtube.com/watch?v=r1zbuLc8RhI ROSCon MP talk] | *[http://www.youtube.com/watch?v=r1zbuLc8RhI ROSCon MP talk] | ||
--> | --> | ||
− | | | + | |[https://docs.google.com/presentation/d/1p6VmrFwmCLdWQIxuaNHbg7660AZBGWHLxfgNo6F0-tI/edit?usp=sharing slides] |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|9 | |style="background:rgb(102, 204, 255)"|9 | ||
|Mar. 8 | |Mar. 8 | ||
− | | | + | |Estimation<!--Perception--> |
− | | | + | |Least-squares line-fitting and <br>outlier rejection with RANSAC for lidar scans |
− | + | |Scikit-learn [https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares ordinary least-squares] and [https://scikit-learn.org/stable/modules/linear_model.html#ransac-regression RANSAC] | |
− | | | + | |[https://docs.google.com/presentation/d/1mtrBRl3HeYwuw4aLGJoLWxNBgxMU0yv9un-D9qEzl04/edit?usp=sharing slides]<br>''HW #2 due'' |
|- | |- | ||
|10 | |10 | ||
|Mar. 10 | |Mar. 10 | ||
− | | | + | |Localization |
− | | | + | |Particle filters, MCL |
− | + | |[http://robots.stanford.edu/probabilistic-robotics/ppt/particle-filters.ppt Thrun particle filtering slides] | |
− | | | + | |[https://docs.google.com/presentation/d/1wqMBu4MxXyffFIyB_KSxss0mvaBTmLYXq9ogNlyZFSw/edit?usp=sharing slides]<br> [https://docs.google.com/document/d/18gidhrrhHwwZiF3EWQZqZ96kaL8gtWZA8sBHyTiXA3k/edit?usp=sharing HW #3] |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|11 | |style="background:rgb(102, 204, 255)"|11 | ||
|Mar. 15 | |Mar. 15 | ||
− | | | + | |HW #3 |
− | | | + | |Coding time |
− | | | + | | |
− | | | + | | |
|- | |- | ||
|12 | |12 | ||
|Mar. 17 | |Mar. 17 | ||
− | | | + | |HW #3 |
− | + | |Quiz then coding time | |
− | | | ||
| | | | ||
|Quiz #1 | |Quiz #1 | ||
Line 282: | Line 288: | ||
|style="background:rgb(102, 204, 255)"|13 | |style="background:rgb(102, 204, 255)"|13 | ||
|Mar. 22 | |Mar. 22 | ||
− | | | + | |SLAM |
− | | | + | |ROS <tt>slam_toolbox</tt> package |
− | | | + | |[https://github.com/SteveMacenski/slam_toolbox slam_toolbox Github], [http://nameless.cis.udel.edu/class_data/cisc829/oct18/thrun_fastslam.pdf Thrun FastSLAM slides]<!--[https://navigation.ros.org/tutorials/docs/navigation2_with_slam.html nav2 Navigating while mapping tutorial]--> |
− | | | + | |[https://docs.google.com/presentation/d/17_J6F7mgkX69VI8iRt2O6zU2b4DsS3OLjhI3_HJj_OQ/edit?usp=sharing slides] |
|- | |- | ||
|14 | |14 | ||
|Mar. 24 | |Mar. 24 | ||
− | | | + | |HW #3<!--Simulation--><!--Localization --> |
− | | | + | |<!--Randomized search, path smoothing--><!--ROS Gazebo--><!--Inference/tracking, Markov localization --> |
− | |<!--[http://www.asl.ethz.ch/education/master/mobile_robotics/Lecture7b.pdf ETH localization 1] (through slide 31), [http://www.asl.ethz.ch/education/master/mobile_robotics/Lecture8.pdf ETH localization 2] (through slide 41),--> | + | |<!--[http://lavalle.pl/planning/ch1.pdf PA Chap. 1-1.3], [http://nameless.cis.udel.edu/class_data/cisc367_s2023/mr_chap10.1.pdf MR Chap. 10-10.1]--><!--[https://classic.gazebosim.org/tutorials Gazebo classic tutorials]--><!--[http://www.asl.ethz.ch/education/master/mobile_robotics/Lecture7b.pdf ETH localization 1] (through slide 31), [http://www.asl.ethz.ch/education/master/mobile_robotics/Lecture8.pdf ETH localization 2] (through slide 41),--> |
− | | | + | |''HW #3 due'' |
|- | |- | ||
|style="background:rgb(102, 204, 255)"| | |style="background:rgb(102, 204, 255)"| | ||
Line 317: | Line 323: | ||
|15 | |15 | ||
|Apr. 7 | |Apr. 7 | ||
− | | | + | |Computer vision |
− | | | + | |Connecting to the RGB-D camera |
− | | | + | |[https://github.com/IntelRealSense/realsense-ros realsense-ros Github], basic OpenCV color processing |
− | + | |[https://docs.google.com/document/d/1cRttNSmWXfSkUzC7snVSrJpz82R7oiioWd0fGGxnDDg/edit?usp=sharing HW #4 / #5] | |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|16 | |style="background:rgb(102, 204, 255)"|16 | ||
|Apr. 12 | |Apr. 12 | ||
− | |<!--Localization --> | + | |Computer vision<!--Localization --> |
− | |<!--Particle filtering, Monte Carlo localization (ROS [http://www.ros.org/wiki/amcl amcl])--> | + | |Line finding<!--Particle filtering, Monte Carlo localization (ROS [http://www.ros.org/wiki/amcl amcl])--> |
− | |<!--[http://robots.stanford.edu/probabilistic-robotics/ppt/particle-filters.ppt Thrun particle filtering slides], [http://nameless.cis.udel.edu/class_data/cisc829/oct4/UTenn_Parker_Localization.pdf U. Tennessee Monte Carlo Localization], [http://robots.stanford.edu/papers/fox.aaai99.ps.gz Fox et al. AAAI 1999 paper], [http://www.youtube.com/watch?v=uiIi2rSKWAU Nao localization at U. Freiburg]--> | + | |[https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html Hough lines]<!--[http://robots.stanford.edu/probabilistic-robotics/ppt/particle-filters.ppt Thrun particle filtering slides], [http://nameless.cis.udel.edu/class_data/cisc829/oct4/UTenn_Parker_Localization.pdf U. Tennessee Monte Carlo Localization], [http://robots.stanford.edu/papers/fox.aaai99.ps.gz Fox et al. AAAI 1999 paper], [http://www.youtube.com/watch?v=uiIi2rSKWAU Nao localization at U. Freiburg]--> |
− | | | + | |[https://docs.google.com/presentation/d/1Fm2bfCp97l0buYP6xlHOw9j187zppfknAYc6JVIzJbI/edit?usp=sharing slides] |
|- | |- | ||
|17 | |17 | ||
|Apr. 14 | |Apr. 14 | ||
|Computer vision<!--Mapping--> | |Computer vision<!--Mapping--> | ||
− | | | + | |Tags/fiducials<!--SLAM (ROS [http://www.ros.org/wiki/gmapping gmapping])--> |
− | |<!--[http://nameless.cis.udel.edu/class_data/cisc829/oct18/thrun_fastslam.pdf Thrun FastSLAM slides], [http://www.youtube.com/watch?v=7iIDdvCXIFM gmapping demo], [http://www.youtube.com/watch?v=F8pdObV_df4 Darmstadt mapping]--> | + | |[https://github.com/AprilRobotics/apriltag AprilTag Github], [https://github.com/christianrauch/apriltag_ros apriltag_ros]<!--[http://nameless.cis.udel.edu/class_data/cisc829/oct18/thrun_fastslam.pdf Thrun FastSLAM slides], [http://www.youtube.com/watch?v=7iIDdvCXIFM gmapping demo], [http://www.youtube.com/watch?v=F8pdObV_df4 Darmstadt mapping]--> |
− | | | + | |[https://docs.google.com/presentation/d/1-60DuJZxCiqbybz7Ck4hdjuQ6ZJ24PVbw31Dq3h2aAM/edit?usp=sharing slides] |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|18 | |style="background:rgb(102, 204, 255)"|18 | ||
|Apr. 19 | |Apr. 19 | ||
− | | | + | |HW #4<!--Mapping--> |
− | | | + | |Coding time |
|<!--UC Berkeley notes on [http://nameless.cis.udel.edu/class_data/cisc829/oct23/gmapping.pdf gmapping], [http://nameless.cis.udel.edu/class_data/cisc829/oct23/scan-matching.pdf scan-matching]--> | |<!--UC Berkeley notes on [http://nameless.cis.udel.edu/class_data/cisc829/oct23/gmapping.pdf gmapping], [http://nameless.cis.udel.edu/class_data/cisc829/oct23/scan-matching.pdf scan-matching]--> | ||
− | | | + | | |
|- | |- | ||
|19 | |19 | ||
|Apr. 21 | |Apr. 21 | ||
− | | | + | |HW #4<!--Mapping--> |
− | | | + | |Coding time<!--RGB-D SLAM (ROS [http://www.ros.org/wiki/rgbdslam rgbdslam])--> |
|<!--[http://nameless.cis.udel.edu/class_data/cisc829/oct25/engelhard_rgbd_slam_slides.pdf RGBD SLAM slides], [http://nameless.cis.udel.edu/class_data/cisc829/oct25/endres12icra.pdf ICRA 2012 RGBD SLAM paper], U. Texas slides on SIFT features [http://nameless.cis.udel.edu/class_data/cisc829/oct25/grauman_lecture15_local_features.pdf 1], [http://nameless.cis.udel.edu/class_data/cisc829/oct25/grauman_lecture16_bow.pdf 2]--> | |<!--[http://nameless.cis.udel.edu/class_data/cisc829/oct25/engelhard_rgbd_slam_slides.pdf RGBD SLAM slides], [http://nameless.cis.udel.edu/class_data/cisc829/oct25/endres12icra.pdf ICRA 2012 RGBD SLAM paper], U. Texas slides on SIFT features [http://nameless.cis.udel.edu/class_data/cisc829/oct25/grauman_lecture15_local_features.pdf 1], [http://nameless.cis.udel.edu/class_data/cisc829/oct25/grauman_lecture16_bow.pdf 2]--> | ||
− | | | + | |''HW #4 due'' |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|20 | |style="background:rgb(102, 204, 255)"|20 | ||
|Apr. 26 | |Apr. 26 | ||
− | | | + | |HW #5 |
− | | | + | |Coding time |
| | | | ||
| | | | ||
Line 359: | Line 365: | ||
|21 | |21 | ||
|Apr. 28 | |Apr. 28 | ||
− | | | + | |Computer vision |
− | | | + | |Getting depth/3-D point cloud from the RealSense |
− | | | + | |[https://github.com/IntelRealSense/realsense-ros realsense-ros Github], [https://github.com/ros-perception/perception_pcl/tree/ros2 perception_pcl] for further analysis |
− | |''HW #5 due'' | + | |[https://docs.google.com/presentation/d/14VjFGrkuAs2aSm0eA9A--8IjM-bsVk0Bb4kOfKtnRCc/edit?usp=sharing slides]<br>''HW #5 due'' |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|22 | |style="background:rgb(102, 204, 255)"|22 | ||
|May 3 | |May 3 | ||
− | |||
− | |||
− | |||
|HW #6 | |HW #6 | ||
+ | |Coding time | ||
+ | |<!--[https://navigation.ros.org/ nav2], [https://navigation.ros.org/tutorials/docs/navigation2_on_real_turtlebot3.html Turtlebot3 navigation tutorial]--> | ||
+ | |[https://docs.google.com/document/d/1c8_zHq2k7myrNJDrRX763M46lIiy27zwKTNoUf8qpfk/edit?usp=sharing HW #6] | ||
|- | |- | ||
|23 | |23 | ||
|May 5 | |May 5 | ||
− | | | + | |Computer vision |
− | | | + | |Object detection |
− | | | + | |[https://github.com/ultralytics/yolov5 YOLOv5] (Python, lots of requirements), [https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data Training YOLOv5 on custom data] |
− | | | + | |[https://docs.google.com/presentation/d/1HDvgGdONIZXZcbZfJaXkRHhLD_gTOTZK1rHa_hA2yhU/edit?usp=sharing slides] |
|- | |- | ||
|style="background:rgb(102, 204, 255)"|24 | |style="background:rgb(102, 204, 255)"|24 | ||
|May 10 | |May 10 | ||
− | |Learning | + | |Learning<!--Ethics & societal issues--> |
− | | | + | |Dynamical tasks, reinforcement learning<!--Professional responsibilities, robots as caregivers and soldiers--> |
− | | | + | |[https://github.com/Farama-Foundation/Gymnasium Gymnasium Github]<!--[https://www.acm.org/code-of-ethics ACM], [https://www.ieee.org/about/corporate/governance/p7-8.html IEEE] codes of ethics; [http://nameless.cis.udel.edu/class_data/849_f2018/coe_for_robotics_engineers.pdf proposed code for robotics engineers];<br>[http://moralmachines.blogspot.com/2009/01/ethical-frontiers-of-robotics.html "The Ethical Frontiers of Robotics", N. Sharkey (2008)]--> |
− | | | + | |[https://docs.google.com/presentation/d/1V3S2bHhwFFzejrBvXQ_FN1Y3hBSFxRaKeW2LLIV46yc/edit?usp=sharing slides] |
|- | |- | ||
|25 | |25 | ||
|May 12 | |May 12 | ||
+ | |HW #6 | ||
+ | |Quiz then coding time | ||
| | | | ||
− | | | + | |Quiz #2 |
− | |||
− | |||
|- | |- | ||
| | | | ||
− | | | + | |May 17 |
− | | | + | |HW #6 demo/competition |
− | |||
| | | | ||
| | | | ||
+ | |''HW #6 due'' | ||
|} | |} |
Latest revision as of 06:23, 10 May 2023
Course information
Title | CISC367-012 Introduction to Mobile Robot Programming |
Description | A hands-on approach to implementing mobile robot algorithms on a small wheeled platform, both in simulation and reality. We will review the fundamentals of kinematics, planning, sensing, and control, as well as getting acquainted with higher-level concepts related to navigation, tracking, mapping, and learning. |
When | Wednesdays and Fridays, 8:40-9:55 am. When there is a homework due, no more than the first 30 minutes of each class will be in lecture format. The rest of the class period (and optionally the subsequent office hours) will be spent working on the robots. |
Where | Feb. 8: Willard 215 Feb. 10 and beyond: Smith 211 |
Instructor | Christopher Rasmussen, 446 Smith Hall, cer@cis.udel.edu |
Office hours | Mondays, 9-10:30 am and Wednesdays and Fridays, 9:55-11 am in Smith 211 (starting Feb. 10) |
Grading |
Programming assignments will be graded on how many of the subtasks you complete or demonstrate successfully. For the overall course grade, a preliminary absolute mark will be assigned to each student based on the percentage of the total possible points they earn according to the standard formula: A = 90-100, B = 80-90, C = 70-80, etc., with +'s and -'s given for the upper and lower third of each range, respectively. Based on the distribution of preliminary grades for all students (i.e., "the curve"), the instructor may increase these grades monotonically to calculate final grades. This means that your final grade can't be lower than your preliminary grade, and your final grade won't be higher than that of anyone who had a higher preliminary grade. I will try to keep you informed about your standing throughout the semester. If you have any questions about grading or expectations at any time, please feel free to ask me. |
Academic policies | Programming projects should be demo'd in class on the deadline day and uploaded to Canvas by midnight of that day (with a grace period of a few hours afterward...after sunrise is definitely late). A late homework is a 0 without a valid prior excuse. To give you a little flexibility, you have 3 "late days" to use on homeworks to extend the deadline to the next class period without penalty. No more than one late day may be used per assignment. Late days will automatically be subtracted, but as a courtesy please notify the instructor in an e-mail of your intention to use late days before the deadline.
Assignment submissions should consist of a directory containing all code (your .cpp/.py files, etc.), any output data generated (e.g., images, movies, etc.), and an explanation of your approach, what worked and didn't work, etc. contained in a separate text or HTML file. Do not submit executables or .o files, please! The directory you submit for each assignment should be packaged by tar'ing and gzip'ing it or just zip'ing it. Students can discuss problems with one another in general terms, but must work independently or within their teams as specified for each assignment. This also applies to online and printed resources: you may consult them as references (as long as you cite them), but the words and source code you turn in must be yours alone. The University's policies on academic dishonesty are set forth in the student code of conduct here. |
Instructions/Resources
Robot |
Yes, our robot platform is a Roomba. Except it can't clean.
|
Operating system |
Working backwards from the ROS requirements there are 3 options for your laptop...
|
ROS2 |
We are using ROS2, to be exact, and the Humble Hawksbill version. My laptop and the Raspberry Pi's on the robots are running Ubuntu, so you will have your best support for this option. I have personally tried installing ROS2 Humble on Windows and it seems to be fine, so I at least have the ability to test things in this environment. I have no access to a Mac and therefore no experience and no ability to help troubleshoot issues there. A lot of public sample code and tutorials are available in both C++ and Python, but expect mostly C++ examples from me. I am agnostic about which of these two languages you use for homeworks and projects, but you will get your best support from me in C++.
|
Readings |
|
Gazebo |
This is a 3-D robot simulator |
Schedule
Note: The blue squares in the "#" column below indicate Wednesdays.
# | Date | Topic | Notes | Readings/links | Assignments/slides |
---|---|---|---|---|---|
1 | Feb. 8 | Introduction | Background, course information | slides | |
2 | Feb. 10 | hello robot, hello ROS | ROS basics, Create ROS interface | Creating & building ROS2 packages, ROS2 nodes, ROS2 topics, Create 3 topics |
slides HW #1 |
3 | Feb. 15 | Kinematics/Dynamics | Degrees of freedom, configuration space; wheeled systems (unicycle/car vs. differential drive) | MR Chap. 2, PA Chap. 13.1.2 | |
4 | Feb. 17 | Kinematics/Dynamics | URDFs, ROS rviz2 and tf2, odometry | rviz2 user manual (Turtlebot3), Introduction to tf2, MR Chap. 13.4 | slides HW #1 due |
5 | Feb. 22 | More ROS + Controllers | ROS 2 workspaces and packages, subscribing and publishing, and timer callbacks; basic feedback controller concepts | FS Chap. 1 | slides HW #2 |
6 | Feb. 24 | Controllers | Waypoint following, line following, trajectory and wall following (pure pursuit) | RVC Chap. 4-4.1.2 | slides |
7 | Mar. 1 | HW #2 | Coding time | Starter code for Python wanderer | |
8 | Mar. 3 | Costmaps and discrete motion planning | Connecting to the lidar sensor; representing the environment as a map and basic planning | rplidar_ros; MR Chap. 10.4, Abbeel slides (skip SLAM, reflection maps) |
slides |
9 | Mar. 8 | Estimation | Least-squares line-fitting and outlier rejection with RANSAC for lidar scans |
Scikit-learn ordinary least-squares and RANSAC | slides HW #2 due |
10 | Mar. 10 | Localization | Particle filters, MCL | Thrun particle filtering slides | slides HW #3 |
11 | Mar. 15 | HW #3 | Coding time | ||
12 | Mar. 17 | HW #3 | Quiz then coding time | Quiz #1 | |
13 | Mar. 22 | SLAM | ROS slam_toolbox package | slam_toolbox Github, Thrun FastSLAM slides | slides |
14 | Mar. 24 | HW #3 | HW #3 due | ||
Mar. 29 | NO CLASS Spring break |
||||
Mar. 31 | NO CLASS Spring break |
||||
Apr. 5 | NO CLASS Instructor away |
||||
15 | Apr. 7 | Computer vision | Connecting to the RGB-D camera | realsense-ros Github, basic OpenCV color processing | HW #4 / #5 |
16 | Apr. 12 | Computer vision | Line finding | Hough lines | slides |
17 | Apr. 14 | Computer vision | Tags/fiducials | AprilTag Github, apriltag_ros | slides |
18 | Apr. 19 | HW #4 | Coding time | ||
19 | Apr. 21 | HW #4 | Coding time | HW #4 due | |
20 | Apr. 26 | HW #5 | Coding time | ||
21 | Apr. 28 | Computer vision | Getting depth/3-D point cloud from the RealSense | realsense-ros Github, perception_pcl for further analysis | slides HW #5 due |
22 | May 3 | HW #6 | Coding time | HW #6 | |
23 | May 5 | Computer vision | Object detection | YOLOv5 (Python, lots of requirements), Training YOLOv5 on custom data | slides |
24 | May 10 | Learning | Dynamical tasks, reinforcement learning | Gymnasium Github | slides |
25 | May 12 | HW #6 | Quiz then coding time | Quiz #2 | |
May 17 | HW #6 demo/competition | HW #6 due |