Difference between revisions of "CISC440 S2022"

From class_wiki
Jump to: navigation, search
(Created page with "==Course information== {| class="wikitable" border="0" cellpadding="5" !width="5%"| !width="95%"| |- |valign="top"|'''Title''' |CISC440/640 ''Computer Graphics'' |- |valign=...")
(No difference)

Revision as of 15:26, 12 January 2022

Course information

Title CISC440/640 Computer Graphics
Description A first course in computer graphics covering fundamental concepts and techniques related to rasterization, textures, 2-D and 3-D transformations (including perspective projection), shading, hidden surface elimination, and anti-aliasing, as well as selected topics in modeling, animation, ray tracing, and global illumination. OpenGL will be used for programming; you should have some familiarity with C/C++ or be ready to learn it.
When Tuesdays and Thursdays, 11:00-12:15 pm
Where In-person
Instructor Christopher Rasmussen, 446 Smith Hall, cer@cis.udel.edu
Office hours ??, ?? pm
TA ??

TA office hours: ??

Grading
  • 60% 5 programming assignments worth 12% each. Each homework will be due about 10 days after being assigned (more for the last one)
  • 20% Midterm exam
  • 20% Final exam. "Bonus topic" lecture material will not be tested
  • 2% Extra credit for completing course evaluation

Graduate students will be given extra tasks to complete or features to implement on each homework, and extra questions to answer on each exam.

Programming assignments will be graded on the basis of correctness, efficiency, and originality. This is not an introductory programming class, so coding style is not critical. However, if you want partial credit for something that doesn't quite work, it needs to be well-commented and easy to follow.

For the overall course grade, a preliminary absolute mark will be assigned to each student based on the percentage of the total possible points they earn according to the standard formula: A = 90-100, B = 80-90, C = 70-80, etc., with +'s and -'s given for the upper and lower third of each range, respectively. Based on the distribution of preliminary grades for all students (i.e., "the curve"), the instructor may increase these grades monotonically to calculate final grades. This means that your final grade can't be lower than your preliminary grade, and your final grade won't be higher than that of anyone who had a higher preliminary grade.

I will try to keep you informed about your standing throughout the semester. If you have any questions about grading or expectations at any time, please feel free to ask me.

Academic policies Programming projects are due by midnight of the deadline day (with a grace period of a few hours afterward...after sunrise is definitely late). A late homework is a 0 without a valid prior excuse. To give you a little flexibility, you have 6 "late days" to use on homeworks to extend the deadline by one day each without penalty. No more than three late days may be used per assignment. Late days will automatically be subtracted, but as a courtesy please notify the instructor (and CC the TA) in an e-mail of your intention to use late days before the deadline. See submission instructions below.

The two exams will be closed book (i.e., no reference materials allowed). Unless otherwise instructed, you are responsible for all material covered up to the day of the exam, both from the assigned readings (everything in the Readings column of the Schedule below) and in lectures (excluding guest lectures).

Students can discuss problems with one another in general terms, but must work independently on programming assignments unless teams are explicitly allowed for that assignment. This also applies to online and printed resources: you may consult them as references (as long as you cite them), but the words and source code you turn in must be yours alone. The University's policies on academic dishonesty are set forth in the student code of conduct here.

Readings

Textbook (required) Fundamentals of Computer Graphics (4th ed.) [Marschner in calendar below]

Steve Marschner and Peter Shirley

CRC Press, 2016

Textbook web site: Author (most useful thing there is link to course with relevant slides), Publisher

This book is NOT at the campus bookstore. The publisher has it, but their prices are bad. On Amazon it's about $60 to rent physical book for semester and about $50 to rent E-book

Instructions

OpenGL Key thing to note: We are using OpenGL 3.3 for programming! A lot of examples on the web are for older 2.x, so beware


Homeworks Assignment submissions should consist of a directory containing all code (your .cpp files, header files, makefile if applicable, etc.), any output data generated (e.g., images, movies, etc.), and an explanation of your approach, what worked and didn't work, etc. contained in a separate text or HTML file. Do not submit executables, .o files, or libraries, please! The directory you submit for each assignment should be packaged by tar'ing and gzip'ing it or just zip'ing it. The resulting file should be submitted through Canvas.

You may develop your OpenGL, C/C++ code in any fashion that is convenient--that is, with any compiler and operating system that you want--but you must avoid OS- and hardware-specific functions. Programs which use Python and other languages will not be accepted, nor any programs that rely heavily on OpenGL 2.x functions.

Schedule

Note: The blue squares in the "#" column below indicate Tuesdays.

# Date Topic Notes Readings Assignments/slides
1 Feb. 16 Introduction Graphics background, course information Marschner, 1-1.4 slides recording
2 Feb. 18 2-D, 3-D Geometry Vector & matrix review, homogeneous coordinates, 2-D & 3-D transformations, quaternions Marschner, 2.4, 5.2-5.2.2, 6-6.3 (skip 6.1.6, 6.2.1-6.2.2), 16.2.2 slides recording
3 Feb. 23 3-D Geometry More 3-D transformations, camera manipulation & the view volume Marschner, 6.5-7.2 slides recording
4 Feb. 25

Add/drop deadline Feb. 26

3-D Geometry Perspective projection, geometry pipeline, transformations with GLM Marschner, 7.3, 7.5; OpenGL tutorials #1 (including installation instructions), #3 slides recording

HW #1

5 Mar. 2
OpenGL/GLFW Program initialization, window creation, geometric primitives Marschner, 17-17.7, 17.9-17.11 slides recording
6 Mar. 4 OpenGL/GLFW Basic animation, user interface callbacks OpenGL tutorial #6 slides recording

interactive_tutorial03.cpp

7 Mar. 9 GPU programming Introduction to GLSL, vertex shaders vs. fragment shaders; GLSL texturing demo Marschner, 17.8; Orange book Chaps. 2-5 slides recording

texture_example.zip (modified 3/11)
HW #1 due

8 Mar. 11 Shading Radiometry: irradiance, radiosity, radiance, BRDFs Marschner, 10-10.2.1, 20-20.2 slides recording

HW #2

9 Mar. 16 Shading Diffuse, specular reflection, Gouraud/Phong shading details; OpenGL, GLSL shading methods Marschner, 10-10.2.2; OpenGL tutorial #8 slides recording
10 Mar. 18 Textures Finish shading/lighting; texture-mapping basics, bump mapping Marschner, 11.2, 11.4 (homogeneous division material--not barycentric coords), 11.5 slides recording
11 Mar. 23 Textures Texturing pipeline, bump maps, lightmaps, environment maps, shadow maps Marschner, 11.1.3-11.1.4, 11.3 slides recording
12 Mar. 25 Midterm review slides recording

2014 midterm (ignore Q7, Q9, Q10, and Q11)
2004 midterm (look at questions 1.1, 1.2, 2.1, and 3.2 only)
HW #2 due

Mar. 30 NO CLASS
Blue Hen Re-Coop Day
13 Apr. 1 MIDTERM EXAM
14 Apr. 6 Particle systems Flocking; introduction to Bullet physics library OpenGL tutorial on clicking, Bullet physics manual (you don't have to read all of it, it's just for reference); Marschner, 11.1.3-11.1.4, 11.3 slides recording

HW #3

Apr. 8 NO CLASS
Instructor away
15 Apr. 13 Textures, clipping Bilinear vs. nearest-neighbor filtering, magnification/minification, mipmaps; line and triangle clipping Marschner, 11.4.4-11.4.5 slides recording
16 Apr. 15 Hidden surface elimination Backface culling, Z-buffering, painter's algorithm Marschner, 8.1.3-8.1.6,, 8.2-8.2.3, 8.4 slides recording
HW #3 due
17 Apr. 20 Finish hidden surface elimination; line drawing BSP trees; DDA, midpoint line-drawing Marschner, 12.4, 8.1-8.1.1, 8.3 slides recording
HW #4
18 Apr. 22 A little Blender, shape modeling Bezier curves and surfaces, Catmull-Rom splines, subdivision Marschner, 15-15.6.1 (ignore material on knots, Hermite form) slides recording
19 Apr. 27 Ray tracing Ray casting, intersection testing Marschner, 4 slides recording
20 Apr. 29 Ray tracing Shadow rays (including soft shadows, ambient occlusion) Marschner, 4 slides recording
21 May 4
Withdraw deadline May 3
Ray tracing Reflections (including glossy), distributed/distribution ray tracing Marschner, 4 slides recording
HW #4 due May 2
HW #5
22 May 6 Global illumination Finish refractions, super-sampling for anti-aliasing, spatial data structures Marschner, 4 slides recording
23 May 11 Global illumination Bidirectional ray tracing, photon mapping Marschner, 4, 12.3, 13.1, 13.4; "Bidirectional Ray Tracing" paper, photon mapping introduction, online demo slides recording
24 May 13 Noise, bonus topic: animation basics Value/Perlin noise, rigging Marschner, 11.5.2-11.5.3, Orange book 15 slides recording
25 May 18 Final review slides recording

HW #5 due

May 18-21 HW #5 demos demo sign up link (if you are a pair, indicate both members)
May 26, 1-3 pm FINAL EXAM